VerifEye^{™D}

WEB VERSION

PK-A3259-10-05-0D

TABLE DES MATIÈRES

Avertissements et mises en garde	4
Introduction	6
Planification de l'installation sur le terrain	9
Configuration du compteur	. 11
Installation du compteur	.23
Vérification des paramètres de communication	.36
Programmation des unités terminales et écriture de scripts	.48
Annexe A : navigation dans les menus de l'écran des compteurs	.62
Annexe B: fiche technique	65
Déclarations standard et garantie	.67
	Avertissements et mises en garde Introduction Planification de l'installation sur le terrain Configuration du compteur Installation du compteur Vérification des paramètres de communication Programmation des unités terminales et écriture de scripts Annexe A : navigation dans les menus de l'écran des compteurs Annexe B: fiche technique Déclarations standard et garantie

1 AVERTISSEMENTS ET MISES EN GARDE

AVERTISSEMENTS:

- RISQUE DE DÉCHARGE, D'ÉLECTROCUTION, D'EXPLOSION OU D'ARC ÉLECTRIQUE. LIRE ET RESPECTER TOUTES LES DIRECTIVES AVEC SOIN.
- PRÉSENCE POSSIBLE DE TENSIONS ÉLEVÉES. RISQUES DE DÉCHARGE ÉLECTRIQUE. PRÉSENCE POSSIBLE DE TENSIONS MORTELLES. Les étapes aux présentes ne peuvent être effectuées que par du personnel qualifié.
- POUR ÉVITER LES RISQUES D'INCENDIE, DE DÉCHARGE OU D'ÉLECTROCUTION, couper tout le courant qui alimente l'équipement avant de le manipuler. Se servir d'un détecteur de tension aux valeurs nominales appropriées pour vérifier que le courant a bien été coupé.
- Il faut toujours adopter des pratiques sécuritaires conformes à la norme américaine NFPA 70E ou aux codes locaux applicables.
- L'équipement décrit aux présentes DOIT être installé et entretenu par du personnel qualifié ayant les connaissances, la formation et l'expérience liées à son installation et à son mode d'emploi.
- L'équipement décrit aux présentes pourrait être alimenté de plusieurs sources; il faut s'assurer que le courant de chacune de ces sources a été coupé avant de procéder à son entretien.
- Ne pas se fier sur les indications de tension de l'équipement décrit aux présentes.
- L'équipement décrit aux présentes ne peut être raccordé qu'au moyen de conducteurs isolés.
- Si le compteur semble endommagé ou défectueux, déconnecter toutes les sources d'alimentation, puis communiquer avec le service de soutien technique par téléphone ou courriel pour obtenir l'assistance requise.

NE PAS DÉPASSER 346 V de ligne à neutre (L-N), ou 600 V de ligne à ligne (L-L). Ce compteur est conçu pour monitorer des charges d'un maximum de 346 V L-N. En dépassant cette tension, on endommage le produit et on met ses utilisateurs en danger. Il faut toujours employer un transformateur de potentiel quand les tensions sont supérieures à 346 V L-N ou à 600 V L-L. Les compteurs VerifEye^{MD} sont des dispositifs de survoltage de catégorie III (600 V).

L'équipement décrit aux présentes peut fonctionner dans des milieux à degré de pollution 2 ou mieux. Dans ces milieux, la pollution conductrice doit être gérée, de même que la condensation et l'humidité élevée. Il faut bien choisir le logement, utiliser la ventilation et connaître les propriétés thermiques de l'équipement, de même que son rapport avec l'environnement. Catégorie d'installation : Il ou III.

Il faut installer un sectionneur entre le compteur et la source d'alimentation. Le sectionneur doit être près du compteur, facilement accessible et marqué comme étant un dispositif de coupure de courant. Il doit aussi répondre à toutes les exigences pertinentes des normes CEI 60947-1 et 60947-3 et convenir à l'usage qu'on veut en faire. Aux États-Unis et au Canada, on peut utiliser des porte-fusibles conçus à cette fin. Il faut aussi installer des sectionneurs et des protecteurs contre les surintensités pour les conducteurs d'alimentation, avec des dispositifs de limitation du courant capables de protéger le câblage. Si l'équipement décrit aux présentes est utilisé d'une manière autre que celle prescrite par le fabricant, la protection qu'il offre pourrait être compromise.

1 AVERTISSEMENTS ET MISES EN GARDE

MISES EN GARDE :

- L'équipement décrit aux présentes n'est pas conçu pour les applications de protection de la vie.
- L'équipement décrit aux présentes ne doit pas être installé dans des emplacements dangereux ou classifiés.
- L'installateur est responsable de la conformité à tous les codes applicables.
- L'équipement décrit aux présentes doit être installé dans un logement convenable sur le plan de la protection contre les incendies et les dangers électriques.
- Si le collecteur est directement raccordé à une source de courant, l'isolateur galvanique sautera immédiatement et ne réagira plus.
- Ne jamais utiliser de produits nettoyants, y compris de l'eau, sur l'équipement décrit aux présentes.
- Mis à part ceux apparaissant dans la documentation et les fiches de prix de Leviton, aucun accessoire ne peut être utilisé avec l'équipement décrit aux présentes.
- Les disjoncteurs utilisés comme sectionneurs de courant doivent répondre aux exigences des normes CEI 60947-1 et 60947-3 (clause 6.11.4.2).
- On ne peut installer de transformateurs de courant qui occupent plus de 75 % de l'espace de câblage de n'importe quelle section transversale de l'équipement.
- Ne pas installer de transformateurs de courant à des endroits où ils pourraient obstruer des ouvertures de ventilation.
- Ne pas installer de transformateurs de courant à des endroits de ventilation d'arcs de disjoncteurs.
- Les transformateurs de courant ne conviennent pas aux méthodes de câblage de classe 2, et ne peuvent être connectés à de l'équipement connexe.
- On doit assujettir les transformateurs de courant et acheminer les conducteurs de façon à ce qu'ils n'entrent pas en contact direct avec des bornes ou des bus actifs.
- Les entrées et sorties secondaires externes devraient être raccordées à des dispositifs conformes aux exigences de la norme CEI 60950.
- Les exigences supplémentaires suivantes s'appliquent aux versions à plaquettes reconnues des compteurs VerifEye^{MD} :
- les compteurs ne peuvent être utilisés qu'avec des transformateurs de courant homologués pour la gestion de l'énergie;
- les fils de sortie associés des transformateurs de courant doivent être raccordés dans le même boîtier;
- à moins que les fils de sortie des transformateurs de courant n'aient été évalués pour confirmer la présence d'un ISOLANT RENFORCÉ, ils doivent être séparés ou isolés des autres circuits;
- les transformateurs de courant sont conçus pour être installés dans le même boîtier que l'équipement. Ils ne peuvent être placés dans des panneaux ou de l'appareillage de commutation.
- L'équipement décrit aux présentes ne doit être utilisé qu'avec du fil de cuivre ou plaqué cuivre.
- · L'équipement décrit aux présentes est conçu pour l'intérieur seulement.

2 INTRODUCTION

La gamme VerifEye^{MD} compte deux séries de compteurs : 7000 et 7100. Ces compteurs permettent de monitorer la tension, le courant, la puissance, l'énergie et bien d'autres paramètres électriques dans des systèmes mono et triphasés. On les raccorde directement à chacune des phases des circuits de tension et des transformateurs de courant. L'information sur la consommation, la demande, le facteur de puissance, la fréquence de ligne, etc. est tirée de ces entrées.

Ces compteurs ne sont pas des dispositifs autonomes; ils doivent être asservis à un enregistreur de données, à une unité terminale (RTU) ou à un réseau de gestion de bâtiment. Leurs interfaces de communication sont de type Ethernet (réseau local) ou RS-485 (sériel). Les réseaux Ethernet acceptent les protocoles BACnet IP et Modbus TCP, alors que les réseaux RS-485 prennent en charge BACnet MS/TP et Modbus RTU. Les compteurs sont aussi dotés d'un port USB pour la configuration sur place et la liaison simultanée à une unité terminale et peuvent être opérés parallèlement avec un RTU.

2.1 Déballage du produit

Les compteurs VerifEye^{MD} peuvent être commandés avec des caractéristiques ou fonctions optionnelles qu'on peut déterminer en regardant l'étiquette du modèle.

Présentation des numéros de modèle

Contrôleur de dérivation intégré 70D48-000 de série 7000 à 48 entrées, avec plaque de fixation et écran ACL

Contrôleur de dérivation intégré 70N48-000 de série 7000 à 48 entrées, avec plaque de fixation, sans écran

Contrôleur de dérivation 71D48-000 de série 7100 à 48 entrées, dans un boîtier en plastique avec écran ACL

Contrôleur de dérivation intégré 70D24-000 de série 7000 à 24 entrées, avec plaque de fixation et écran ACL

Contrôleur de dérivation intégré 70N24-000 de série 7000 à 24 entrées, avec plaque de fixation, sans écran

Contrôleur de dérivation 71D24-000 de série 7100 à 24 entrées, dans un boîtier en plastique avec écran ACL

Contrôleur de dérivation intégré 70D12-000 de série 7000 à 12 entrées, avec plaque de fixation et écran ACL

Contrôleur de dérivation intégré 70N12-000 de série 7000 à 12 entrées, avec plaque de fixation, sans écran

Contrôleur de dérivation 71D12-000 de série 7100 à 12 entrées, boîtier en plastique, avec écran ACL

Compteur triphasé 70D03 de série 7000, boîtier en plastique pour rail DIN, avec écran ACL

Compteur triphasé 71D03 de série 7100, boîtier en plastique à fixation murale, avec écran ACL

2 INTRODUCTION

2.2 Anatomie du compteur

No de série, no

de modèle et identifiant(s) MAC

Toutes les connexions à faire par les utilisateurs sont faites sur la plaquette de circuits. La fonction et la polarité des connecteurs sont indiquées.

WEB VERSION

Entrée de tension 1 Entrée de tension 2 Mise à la terre

2 INTRODUCTION

3 PLANIFICATION DE L'INSTALLATION SUR LE TERRAIN

3.1 Tâches des gestionnaires de projet

L'installation d'un compteur requiert souvent de la coordination entre personnes ou groupes ayant des responsabilités différentes. Il faut donc prendre quelques minutes pour déterminer qui fera quoi, et quels outils seront requis à chaque stade du processus. Il faut aussi déterminer comment on communiquera avec le compteur, configurer les adresses, installer le logiciel PMVU, obtenir les NIP dont on a besoin, etc. Plus on fera de choses avant l'installation, moins on aura à en faire une fois sur le terrain. La section suivante donne un aperçu de la marche à suivre (des directives plus détaillées apparaissent dans la section d'après).

3.1.1 Options de configuration et d'affichage des données

Les compteurs VerifEye offrent trois méthodes de configuration et d'affichage des données. L'interface la plus robuste est une application pour Windows (PMVU) qu'on peut installer sur un ordinateur ou une tablette. Son utilisation est recommandée pour les installations complexes, et on doit l'employer pour paramétrer des fonctions avancées, comme les alarmes par exemple. La deuxième interface est l'application Web VerifEye, conçue pour les téléphones et les tablettes qu'on peut connecter via un port USB ou Ethernet. La troisième interface est un écran aux fonctions limitées qui permet aux utilisateurs de faire certaines observations. On peut aussi se servir d'une unité terminale pour effectuer la configuration si les réglages de communication ont déjà été faits. Les caractéristiques de chacune de ces interfaces sont résumées ci-dessous.

Interfaces possibles	Logiciel PMVU installé sur un ordinateur	Application Web VerifEye installée sur un appareil intelligent	Écran du compteur (le cas échéant)	Unité terminale (système hôte), Modbus/ BACnet		
Quand	Paramétrage du compteur Visite de service	Visite de service	Utilisateurs	Système de bâtiment		
Valeurs en temps réel	Tous les paramètres du compteur Captage de formes d'onde Analyse harmonique Affichage de tous les éléments Diagramme de Fresnel Alarmes	Tous les paramètres du compteur Affichage d'éléments multiples	Tension Courant VA VAR KWh Affichage d'un seul élément	Tous les paramètres du compteur		
Configuration	Tout le compteur Guides visuels Copier/coller	Tout le compteur Par texte	Communication seulement	Tout le compteur Par registre		
NIP de sécurité	Soutien technique – Niveau 3	Lecture seulement – Niveau 1* Lecture/écriture – Niveau 2*	Lecture seulement – Niveau 1* Lecture/écriture – Niveau 2* (communication seulement)	Soutien technique – Niveau 3		

3.1.2 Information accessible depuis chacune des interfaces

* Si les NIP ont été configurés

3 PLANIFICATION DE L'INSTALLATION SUR LE TERRAIN

3.2 Survol de la configuration du compteur

Le travail effectué avant l'installation permet de gagner du temps sur le terrain et de faire moins d'erreurs.

Matériel	Tâches
 Ordinateur de bureau ou portable Câble USD de type AB (de préférence) ou port Ethernet et	Installation du logiciel PMVU Connexion du câble USB/Ethernet entre l'ordinateur et
de recharge USB (>500 mA) Clé USB (PMVU) ou accès à www.leviton.com et	le compteur Établissement de la communication avec le compteur Mise à jour du micrologiciel (si désiré) Configuration du logiciel en vue du paramétrage du
téléchargement de logiciels pour le produit visé Schémas du système électrique	compteur Lecture de la documentation sur le câblage

3.3 Survol de l'installation du compteur

L'installation doit être effectuée par un électricien agréé.

Matériel	Tâches
Matériel de fixation (fourni par le client)	Fixation mécanique
Câblage et accessoires, étiquettes, attaches	Installation électrique
Ordinateur ou appareil intelligent	Pose du couvercle du compartiment de tension
 Multimètre, pince ampèremétrique 	Mise sous tension du compteur
Caméra	Vérification du fonctionnement du compteur

3.4 Survol des étapes de vérification et de communication

Ces étapes peuvent être effectuées alors que le compteur est sous tension.

Matériel	Tâches
 Ordinateur (logiciel PMVU) ou appareil intelligent (application Web) Matériel de diagnostic des anomalies sur le terrain Multimètre, pince ampèremétrique Caméra 	Localisation du wattmètre Détermination de l'unité terminale Ajout de terminaisons (au besoin) Vérification des réglages de communication du compteur Vérification de la santé du compteur (déceler les erreurs de configuration) Analyses (PMVU) Correction de l'instrumentation Réglage des NIP de sécurité Vérification des étapes

3.5 Survol de la programmation et de l'écriture de scripts pour l'unité terminale

Matériel	Tâches
Ordinateur (accès à distance à l'unité terminale) Matériel de diagnostic à distance Liste des registres	Vérification des réglages de communication du compteur Confirmation des protocoles de communication Essai de la connectivité à distance Exécution des scripts de configuration Confirmation de l'intégrité des données

La présente section décrit la configuration et le paramétrage d'un compteur VerifEye^{MD}. Cette étape a été réalisée en fonction d'une entreprise ou d'un projet donné, mais on peut enregistrer et envoyer la configuration par courriel à un installateur. Le travail peut également être fait sur place en reflétant les relevés existants.

Le logiciel PMVU propose des guides visuels et des contextes pour faciliter la configuration. Se reporter à la section de survol de ce logiciel pour obtenir des renseignements supplémentaires. Par défaut, les compteurs VerifEye^{MD} prennent une adresse Ethernet de type DNS. Une pratique courante est de se servir d'une connexion USB pour paramétrer des communications via Ethernet à une adresse IP statique, pour ensuite se connecter au réseau pour la trouver. Pour faciliter cette opération, on peut sélectionner **Refresh Connectivity** au niveau du logiciel PMVU.

4.1 Installation du logiciel Power Meter Viewer Utilities (PMVU)

Insérer la clé contenant le logiciel PMVU dans un port USB de l'ordinateur ou télécharger ce dernier du site FTP de Leviton (personnel qualifié de l'entreprise seulement). L'outil d'installation démarre automatiquement. Dans le cas contraire, naviguer dans le contenu de la clé et chercher le programme **Setup.exe**; double-cliquer dessus et suivre les directives à l'écran.

Installation personnalisée

Si on veut sauvegarder le logiciel PMVU et les fichiers connexes à un endroit précis, on peut double-cliquer sur le dossier supportfiles et exécuter le programme Setup.exe. Il faudra alors entrer des détails supplémentaires.

4.1.1 Options de connexion et de configuration au moyen du logiciel Power Meter Viewer Utilities (PMVU)

- câble USB;
- Ethernet, à une adresse IP prédéterminée;
- recherche sur le réseau;
- création d'un fichier de configuration seulement (aucun compteur connecté).

REMARQUE : on recommande d'utiliser un câble USB de type A-B si on est un nouvel utilisateur qui peut physiquement accéder au compteur.

4.1.2 Connexion USB (alimentation et communication)

- 1. Connecter le compteur VerifEye^{MD} à un port USB de l'ordinateur afin de l'alimenter et de pouvoir communiquer avec lui.
 - a. ISi le compteur est muni d'un écran, ce sera la façon la plus évidente de voir s'il fonctionne.
 - b. Dans le cas des modèles sans écran, un témoin vert de la plaquette de circuits clignotera pour indiquer que le compteur a bel et bien été initialisé.

MISE EN GARDE : les compteurs VerifEye^{MD} tirent un courant de 450 mA du port USB. Il faut toutefois s'assurer que l'hôte est aux normes de l'industrie si on veut évite une éventuelle surcharge. Si le compteur ne se met pas sous tension, ou papillote quand il est alimenté via le câble USB, il faut utiliser une autre option de configuration.

Le compteur commence à communiquer.

4.1.3 Connexion à un réseau Ethernet

Pour configurer un compteur via un réseau Ethernet, il faut qu'il soit alimenté par le biais d'une seconde connexion. En effet, les compteurs ne prennent pas en charge le protocole d'alimentation par Ethernet (PoE). Si le compteur est déjà installé au sein du système électrique du bâtiment, il suffit d'ouvrir le disjoncteur (ou le sectionneur approuvé), ce qui provoquera la mise sous tension du bloc d'alimentation interne.

REMARQUES:

- dans les rares cas où le port USB de l'ordinateur ne peut fournir un courant de 500 mA, un chargeur c.a./USB ou une pile USB pourrait servir de source quand on emploie un réseau Ethernet pour les communications.
- les options Network Scan et Connect Over Ethernet to IP requièrent toutes les deux qu'il y ait une connexion active entre le compteur et l'ordinateur de configuration.

4.1.4 Protocole de configuration dynamique de l'hôte (Dynamic Host Configuration Protocol ou DHCP)

Par défaut, les compteurs VerifEye^{MD} sont en mode DHCP afin d'éviter les conflits d'adresses IP entre eux et d'autres pièces d'équipement. Les compteurs attendent donc de recevoir leur adresse d'un routeur, d'un commutateur de niveau 3 ou d'un serveur DHCP. Si le compteur et l'ordinateur obtiennent leurs adresses respectives du même fournisseur DHCP, ils seront en mesure de communiquer entre eux. Au moment de la mise sous tension, le compteur affichera son adresse IP sur son écran (s'il en est doté); l'adresse peut aussi être trouvée via la fonction **Network Scan**.

4.1.5 Connexion directe

Quand un ordinateur est directement connecté à un compteur VerifEye via un câble Ethernet, il n'y a pas de service DHCP. On peut cependant l'activer en changeant soit les réglages de communication du compteur, soit la configuration réseau de l'ordinateur.

Modèles avec écran

Dans le cas de modèles munis d'un écran, aller à : Communications > Ethernet Settings > DHCP > OFF

Modifier l'adresse IP du compteur de manière à ce qu'elle corresponde au sous-réseau de l'adresse IP de l'ordinateur, la rendant ainsi unique, ou bien, noter l'adresse active du compteur et effectuer les réglages ci-dessous au niveaude l'ordinateur.

Panneau de configuration

> Centre de réseau et partage

- > Modifier les paramètres de la carte
 - > Propriétés (cliquer à droite après avoir sélectionné le réseau)
 - > Protocole Internet Version 4 (TCP/IPv4)
 - > Propriétés

• Use the following IP address:	
IP address:	192 . 168 . 1 . 100
Subnet mask:	255.255.255.0
Default gateway:	

Utiliser **192.168.1.100** et **255.255.255.000** comme adresse IP et masque de sous-réseau, respectivement.

Une fois l'ordinateur et le compteur au même sous-réseau IP, on peut procéder comme suit.

- 1. Lancer le logiciel PMVU et entrer l'adresse IP du compteur (montrée comme adresse par défaut).
- 2. Sélectionner Connect over Ethernet to: dans la fenêtre contextuelle.

Connect o	ver Ethernet to	o: ->	
I	92.168.1.105		5.0

Le compteur commence à communiquer.

Pour plus d'informations sur la configuration de la jauge, reportez-vous à la section Présentation des utilitaires du visualiseur de jauge d'alimentation.

Modèles sans écran

Si leur adresse est statique, les compteurs VerifEye sans affichage peuvent seulement communiquer avec un ordinateur directement via un réseau Ethernet. Le réglage de cette adresse doit être fait à l'avance au moyen d'une autre interface (USB ou sérielle).

4.1.6 Recherche sur le réseau

La fonction **Network Scan** sert a monitorer des compteurs VerifEye déjà installés et configurés sur un réseau Ethernet. En l'activant, on provoque l'émission d'un paquet de recherche UDP sur le réseau où se trouve l'ordinateur doté du logiciel PMVU. Normalement, cela se fera sur un réseau d'entreprise équipé d'un serveur DHCP. Chaque compteur qui répondra s'affichera dans un tableau montrant ses caractéristiques et identifiants.

ОК	Device ID	Mode	BACnet Port	Modbus Port	MAC Address	Serial Number	IP Address	Meter
	527000	Modbus	47808	502	00:0D:63:31:10:3C	P481807002	182.168.233.150	SERIES 7100
Cancel								
Rescan								
-	-			-				
Test								
Setup								

Sélectionner le compteur voulu et cliquer sur **OK**, **Test** ou **Setup**. Il est à noter que l'efficacité de ce procédé dépend beaucoup de la configuration de l'ordinateur (qui pourrait avoir plus d'une carte réseau) et du réseau. Sélectionner **Rescan** afin de faire plusieurs tentatives pour trouver un compteur sur un réseau achalandé (le protocole UDP ne refait pas automatiquement des tentatives supplémentaires).

4.1.7 Lancement du configurateur

La dernière option offerte dans la fenêtre contextuelle **Connect to Meter** du logiciel PMVU est **Launch Configurator**. Elle permet de créer un tableau de configu-ration ou d'alarmes qu'on pourra utiliser plus tard sans se connecter au compteur. Après avoir demandé à l'utilisateur d'entrer un modèle de compteur, le logiciel démarre dans un mode à fonctionnalité réduite. Ce mode n'affecte que des fichiers.

4.2 Survol du logiciel Power Meter Viewer Utilities (PMVU)

Le logiciel PMVU est une application pour Windows utilisée pour configurer et vérifier des compteurs VerifEye^{MD}. On peut accéder à toutes les fonctions et à tous les menus à partir de la liste déroulante centrale, qui a un filtre de contenu permettant de voir les données de consommation de base (**Basic**) ou étendues (**Extended**), ce qui peut s'avérer utile lorsqu'on effectue un diagnostic des anomalies. L'information qui apparaît dans la liste déroulante pour chaque filtre est résumée ci-dessous.

										E		d			
										\geq					
						Alarm	Status 🥚	View Alarm	Basic	Display Me	nu Power		2	-	0
Frequency (F	Hz): 60.01														ì
Voltage V Input 1	L1-N 140.03	L2-N 0.16	L3-N L 0.15	-N Average 70.10	L1-L2 140.02	L2-L3 0.04	L3-L1 140.03	L-L Average 70.03							

Données affiché	es	Données de base	Données étendues
Contrôle	Alimentation	~	~
	Énergie	~	~
	Demande	~	~
	Facteur de puissance		~
	Captage de formes d'onde		~
	Harmoniques		~
	Diagramme de Fresnel		~
Configuration	Configuration du compteur	~	~
	Paramétrage des communications	~	~
	Alarmes		~
	Réglages avancés	~	~
	À propos du compteur	~	~

- 4.2.1 Configuration de composants électriques via le logiciel Power Meter Viewer Utilities (PMVU)
 1. Se rendre à l'option Meter Setup sous Display Menu List Box.
 - 2. Entrer une description de l'emplacement du compteur (System Description).
 - 3. Entrer une description de l'élément (Element Description, soit A, B, etc.).
 - Sélectionner l'entrée de tension (Voltage Input, connecteur 1 ou 2) Pour OS48 uniquement.
 - 5. Sélectionner le multiplicateur de tension (facultatif).
 - 6. Sélectionner le type de service (Service Type, 3 phases/4 fils, p. ex.).
 - 7. Sélectionner le type de transformateur de courant (CT Type) (HSC-050).
 - 8. Régler le CT Multiplier (facultatif).
 - 9. Régler le CT Flipper (facultatif).
 - 10. Reprendre les étapes 3 à 7 pour chaque élément.
 - 11. Cliquer sur SEND SETUP TO METER.

4.2.2 Configuration des communications RS-485 via le logiciel Power Meter Viewer Utilities (PMVU)

Si on veut établir des communications via une connexion RS-485, il faut suivre les étapes cidessous.

- 1. Se rendre à l'option Communication Setup sous Display Menu List Box.
- 2. Select RS-485.
- 3. Sélectionner Modbus ou BACnet.

Si on a sélectionné Modbus, il faut remplir le champ suivant :

- Serial Settings
- Set Modbus Address

Si on a sélectionné BACnet, il faut remplir les champs suivants :

- Serial Settings
- Device ID
- MS/TP Address
- Max Masters (facultatif)
- Max Info Frames (facultatif)
- 4. Cliquer su SEND SETUP TO METER.

4.2.3 Configuration des communications Ethernet via le logiciel Power Meter Viewer Utilities (PMVU)

Si on veut établir des communications via une connexion Ethernet, il faut suivre les étapes cidessous.

- 1. Se rendre à l'option Communication Setup sous Display Menu List Box.
- 2. Sélectionner Ethernet.
- 3. Sélectionner Modbus ou BACnet.
- 4. Si on a sélectionné Modbus, il faut remplir le champ suivant :

Modbus Port (facultatif)

Si on a sélectionné BACnet, il faut remplir les champs suivants :

- Device ID
- BACnet Port and BBMD
- 5. Sélectionner DHCP ou Static IP.
- 6. Si on a sélectionné DHCP, il faut passer à l'étape suivante.

Si on a sélectionné Static IP, il faut remplir les champs suivants :

- Static IP Address
- Subnet Mask
- Gateway Mask
- Default Gateway
- 7. Cliquer sur SEND SETUP TO METER.

4.2.4 Configuration d'alarmes via le logiciel Power Meter Viewer Utilities

Les compteurs VerifEye peuvent émettre des alarmes en cas de conditions qui dépassent ou qui sont en deçà des valeurs nominales de tension et de courant sur n'importe quel canal.

Méthodes de configuration

Le logiciel PMVU emploie des entrées dynamiques pour le paramétrage des alarmes. Le champ de texte sélectionné devient la condition prioritaire; les champs connexes sont recalculés de façon à obtenir un jeu cohérent. Les champs gris ne servent qu'à la configuration, et ne sont PAS stockés dans le compteur. Seuls les champs à fond noir sont sauvegardés dans la mémoire des compteurs ou dans des fichiers de configuration.

Pourcentages de valeurs nominales

Il est préférable d'entrer les seuils d'alarme sous forme de pourcentages de valeurs nominales quand on veut que ces alarmes soient déclenchées en fonction des capacités de composants électriques ou des exigences de normes de l'industrie. On peut par exemple régler une alarme de surcharge à 80 % de la capacité d'un disjoncteur donné pour ne pas dépasser les seuils recommandés par les codes nationaux.

Valeurs absolues

On peut aussi choisir des valeurs absolues de déclenchement en les entrant directement dans les champs voulus (à fond noir).

Voltage Alarms										
Persister	nce (second	<i>s)</i> 15	Lower Limit % Service	Upper Limit % Service	Nominal Service	Lower Alarm	Upper Alarm			
Сору	Channel	Enable	Voltage	Voltage	Voltage	Voltage (RMS)	Voltage (RMS)			
Сору	V1 L1-N	0	80	120	277	222	332			
Сору	V1 L2-N	0	80	120	277	222	322			
Сору	V1 L3-N	0	80	120	277	222	322			
Сору		۲	80	120	480	384	576			
Сору	V1 L2-L3	•	80	120	480	384	576			
Сору	V1 L3-L1	۲	80	120	480	384	576			

4.2.5 Réglage de l'horloge à temps réel

Les compteurs VerifEye^{MD} ont une fonction d'horloge à temps réel (**Real Time Clock**). Cette horloge ne sert qu'à horodater les données d'intervalles dans le journal, et n'entre pas en ligne de compte dans les calculs faits par le compteur. Pour ceux qui utilisent la fonction d'enregistrement de données par intervalles (Interval Data Recording, ou IDR) du compteur, il est utile (mais non obligatoire) de régler l'horloge de façon à ce que ces données soient uniquement identifiées. Pour effectuer les réglages, on peut passer par le logiciel PMVU, sous l'onglet **Advanced**, en cliquant sur la petite icône dans le coin inférieur droit de l'horloge.

Cette icône lance le **Window Calendar**, qui permet aux utilisateurs de choisir n'importe quelles date et heure. L'option **Set Time to Now** fait en sorte que l'heure courante soit automatiquement entrée. Cliquer sur **OK** pour enregistrer les valeurs dans le compteur.

Source d'alimentation de l'horloge à temps réel

L'horloge à temps réel fonctionne sur un circuit autonome à basse puissance. L'heure est ainsi gardée par un super condensateur même en l'absence d'une source d'alimentation externe à branchement direct ou USB. Ce condensateur peut faire fonctionner l'horloge durant des pannes de courant normales ou pouvant durer des jours ou même des semaines, mais on ne devrait pas s'attendre à ce qu'il le fasse alors que le compteur est rangé ou en cours d'expédition.

REMARQUE : on recommande que les utilisateurs qui veulent se servir de la fonction **Interval Data Recording** de leur compteur VerifEye^{MD} s'assurent que l'horloge à temps réel **(Real Time Clock)** est réglée durant la procédure de mise en service.

4.2.6 Récupération de données d'intervalles

Les compteurs VerifEye^{MD} conservent un journal interne des données énergétiques (kWh nets) pour chacun de leurs canaux. Ce journal est mis à jour toutes les 15 minutes et est toujours actif. Les compteurs stockent ainsi les intervalles de 15 minutes pendant 63 jours. Les données peuvent être récupérées par des utilisateurs voulant combler des manques attribuables à des unités terminales hors ligne ou à des interruptions de communication. On peut accéder à ces données d'intervalles en passant par le menu **Advanced** du logiciel PMVU.

Cliquer sur Download.

Path to logged data file (.csv)

Par défaut, le nom des fichiers de données est formé du numéro de série et du nom du compteur suivis de - Datalog.

Cliquer sur OK pour afficher tout le chemin de données.

Γ		Path to logged data file (.csv)	
	Download	C:\Users\User Name\Documents\S7ConfigurationUtilities\P12365498710 Meter Name.csv	

Les journaux de données se présentent sous la forme de fichiers CSV (Comma Separated Values) qu'on peut ouvrir dans Excel ou un autre programme compatible. Les données sont énumérées en ordre chronologique suivant un compteur ordinal interne de 32 bits. Ce compteur peut être utilisé pour fusionner des fichiers au besoin.

EXEMPLE :

Numéro séquentiel	Horodatage	A1 kWh	A2 kWh	A3 kWh	A System	B1 kWh
123456	5/15/2018 12:00	1.11E+5	2.22E+5	3.33E+5	6.66E+5	0
123457	5/15/2018 12:15	1.12E+5	2.23E+5	3.34E+5	6.69E+5	0

4.3 Survol de l'application Web VerifEye^{MD}

Les compteurs VerifEye^{MD} on une application Web intégrée à laquelle on peut accéder depuis n'importe quel appareil intelligent doté d'un navigateur. On doit alors se servir du port USB ou Ethernet.

REMARQUES :

- Les utilisateurs de Mac peuvent configurer le compteur au moyen de l'interface appli Web de VeriEye^{MD} en installant un pilote inclus dans le matériel de distribution média ou disponible sur le site Web leviton.com.
- L'application touche un élément à la fois.

4.3.1 Connexion à l'application Web via un câble USB

- 1. Connecter l'appareil intelligent au compteur.
- 2. Ouvrir le navigateur Web.
- Entrer <u>http://169.245.1.5</u> dans la barre d'adresse (il s'agit de l'adresse statique du port USB).

4.3.2 Connexion à l'application Web via un câble Ethernet

- 1. Trouver l'adresse IP du compteur en suivant une des méthodes ci-dessous.
 - Se rendre à About Meter dans le menu de l'écran.
 - Se servir d'un outil de recherche sur réseau pour trouver l'adresse en connectant et en déconnectant le câble Ethernet.
 - Régler une adresse statique pour le compteur en utilisant l'interface série.
- 2. Connecter l'appareil intelligent au même sous-réseau que le compteur.
- 3. Ouvrir le navigateur Web.
- 4. Entrer l'adresse Ethernet du compteur dans la barre du navigateur.

4.3.3 Authentification

Comme l'application Web peut être consultée et commandée depuis n'importe quel appareil intelligent, et qu'elle communique en parallèle avec le système hôte, on peut attribuer un NIP au compteur afin d'en restreindre l'accès.

Entrer le NIP, le cas échéant, ou laisser le champ vide dans le cas contraire, puis cliquer sur **LOGIN**.

La présente section décrit l'installation physique du compteur et fournit des conseils sur le raccordement des transformateurs de courant (TC) dans le panneau de distribution électrique et au compteur lui-même.

5.1 Possibilités d'installation

Les compteurs VerifEye sont vendus sous plusieurs formes. Leur boîtier est conçu pour se fixer à un mur et être raccordé à un conduit électrique. Des versions sur plaque sont également prêtes à être fixées à l'intérieur d'un logement NEMA fourni par le client.

MISE EN GARDE : il faut prendre soin de ne pas déformer la plaquette de circuits durant la procédure de fixation.

Modèles en boîtier

Cat. 71D12

Modèles sur plaque

Cat. 70D12

Cat. 70D48 et 70D24

2. Fixer le compteur..

Se servir du boîtier comme gabarit.

REMARQUE : si on ne peut se servir du boîtier, on peut se reporter au dessin technique qui se trouve en annexe.

Cat. 71D12

Cat. 71D48 et 71D24

6. Raccorder les fils de communication et ceux des transformateurs de courant (TC).

5.3 Séquence d'installation d'un modèle 70D03

La présente section illustre l'installation d'un modèle 70D03, doté d'un canal de rail DIN pour en faciliter l'installation. Ce modèle doit être installé dans un boîtier électrique homologué UL.

- À l'intérieur d'un boîtier homologué UL, fixer une section de rail DIM T35 sur laquelle poser le modèle PS3HD. Prévoir suffisamment d'espace dans le boîtier pour acheminer les fils de tension, de TC et de communication. (Le boîtier n'est pas fourni; le client doit se le procurer.)
- 2. Installer le compteur sur le rail DIN en insérant la partie supérieure du canal dont il est doté dans la partie supérieure du rail, puis en appuyant fermement le compteur sur ce dernier jusqu'à ce qu'un déclic se fasse entendre. On peut dégager le compteur du rail en utilisant un tournevis pour tirer sur ses pattes inférieures.

4. Remettre le couvercle du compartiment à tension élevée.

5. Raccorder les fils électriques.

Raccord des fils de tension

Raccorder les fils L1, L2, L3 et N au besoin au compteur via un sectionneur ou un disjoncteur dédié. On doit utiliser des fils de tension THHN de calibre 14 AWG à tension nominale de 600 V c.a. (ou l'équivalent).

REMARQUE : vérifier si ce disjoncteur ou ce sectionneur est marqué comme étant réservé au compteur.

Charges monophasées L1-N ou L2-N de 110 V c.a. : éclairage, appareils ménagers, séjours.

Charges monophasées L1-L2 de 220 V c.a. : chauffe-eau, sécheuses, équipement sans fil de neutre.

Charges biphasées L1-L2 de 220 V c.a. : panneaux de distribution, équipement avec fil de neutre.

REMARQUE : les compteurs VerifEye^{MD} se servent de la borne NEUTRAL comme référence de tension. Dans les systèmes dépourvus de conducteur de neutre, Leviton suggère de connecter un fil de terre à cette borne. Si elle reste ouverte, les mesures L-L seront exactes, mais les mesures L-N pourraient être asymétriques. Si un fil de terre y est raccordé, un courant de < 2 mA passera dedans.

5.6 Notions de base sur les transformateurs de courant

- 1. L'étiquette des transformateurs de courant (TC) doit afficher les valeurs suivantes .
 - homologation UL à 600 V c.a.;
 - homologation UL2808;
 - tension de sortie de 1/3 V (333 mV);
 - plage convenant aux circuits (on recommande 5-120 % des valeurs nominales des TC).

2. Les TC doivent être correctement orientés et placés :

- la flèche doit pointer vers la charge (ou dans la direction indiquée sur l'étiquette du TC);
- la flèche doit pointer dans la direction opposée du panneau (ou dans la direction indiquée sur l'étiquette du TC);
- ils doivent être placés sur le premier conducteur de tension de référence (L1-L2);
- · le chromocodage et la polarité doivent être respectés;
- il faut employer le fil de blindage s'il y en a un (le raccorder à la borne « S » de la plaquette de circuits imprimés).

Notions de base sur les transformateurs de courant

> Blanc : positif. Noir : négatif. (pas de blindage)

TC à enroulements de Rogowski

Blanc : positif. Brun : négatif. Fil dénudé : blindage.

5.7 Raccordement des TC au compteur

L'image ci-dessous montre comment raccorder les TC aux bornes d'entrée des modèles S7000/7100 pour chaque type d'installation. En l'absence du type exact, il faut choisir le service **SINGLE PHASE** (monophasé) du menu déroulant et configurer chaque canal séparément. Les charges triphasées (côté gauche) et biphasées (côté droit) ne sont montrées qu'à titre d'exemple. Les éléments du compteur sont entièrement interchargeables.

REMARQUES :

 Les entrées de courant et de tension doivent être installées « en phase » pour assurer des lectures exactes (c'est-à-dire TC1 raccordée à la ligne 1 et TC2 raccordée à la ligne 2). L'orientation est critique; il faut s'assurer que les côtés ligne et charge de tous les TC sont dans le bon sens.

La présente section décrit la mise en service du compteur par un technicien en instrumentation. On peut procéder à l'installation électrique avant la réception de l'unité terminale, mais le technicien doit alors travailler avec un programmeur qui confirmera alors les connexions depuis un système hôte à distance. On peut aussi se servir d'un multimètre numérique pour confirmer les mesures aux bornes de la plaquette au besoin.

AVERTISSEMENT : on présume que le compteur a été mis sous tension de ligne. Une fois le couvercle du dessus retiré, on ne peut toujours au compteur (et à ses boutons). QUE SI LE COUVERCLE DU COMPARTIMENT DE TENSION ÉLEVÉE EST EN PLACE.

REMARQUE : les réglages de communication et les valeurs des données en temps réel peuvent être vérifiés rapidement depuis l'écran, si le compteur en est pourvu. Si des modifications étendues sont requises, on recommande l'utilisation d'un ordinateur comme interface.

6.1 Connexions physiques sur un réseau RS-485 à branchements multiples

Les compteurs VerifEye^{MD} sont conçus pour les installations RS-485 bifilaires en semi-duplex.

- Résistances de terminaison : NON comprises. Si le compteur se trouve à la fin d'une cascade, il faut connecter une résistance à fils de 120 Ω entre les bornes positive et négative du connecteur.
- Résistances de polarisation : NON comprises. Il faut en utiliser si le mode d'attente du bus a une tension de circuits logiques indéterminée. On les met habituellement au noeud principal (elles doivent normalement être de 680 Ω sur un réseau RS-485).
- Topologie de réseau : les réseaux RS-485 sont conçus pour les configurations en cascades (connexions sérielles) plutôt qu'en étoile.
- Noms de signal : certains dispositifs RS-485 utilisent les désignations « A » et « B » au lieu de « - » et « + », respectivement. De nombreux fabricants n'étiquettent pas bien les bornes de leurs produits.
- Charge du bus : les compteurs VerifEye^{MD} sont des charges de 1/8 d'unité permettant des connexions en parallèle à 256 dispositifs au plus.

6.2 Vérification des communications

La vérification permet de confirmer TANT l'interface physique (sérielle ou Ethernet) QUE le protocole (Modbus ou BACnet).

L'écran peut être consulté pour confirmer les réglages de chaque combinaison d'interface ou de protocole. L'écran est intuitif et regroupe les registres couramment associés. Des flèches indiquent comment se déplacer d'un menu à l'autre. L'élément actif est identifié par un caractère clignotant. Appuyer sur le bouton ENTER pour sélectionner une valeur, ou sur les boutons UP ou DOWN pour faire défiler les valeurs offertes par le compteur.

REMARQUE : l'écran ne permet d'apporter des changements qu'à la configuration de l'interface de communication. Si d'autres modifications sont requises (le type de TC, par exemple), elles doivent être faites par l'intermédiaire d'une interface logicielle.

REMARQUE : une carte de navigation complète se trouve à l'annexe A du présent guide.

Logiciel Power Meter Viewer Utilities/application Web VerifEye^{MD}

Si le compteur VerifEye^{MD} n'est pas doté d'un écran ou si on préfère vérifier l'installation au moyen d'un ordinateur, on peut utiliser le logiciel PMVU ou l'application Web, de conception similaire. Se reporter à la section relative à la configuration pour avoir un survol de ces interfaces ou pour pouvoir accéder à des vidéos sur leur utilisation.

6.3 Vérification de l'interface physique

Réseaux sériels

Dans un réseau sériel à branchements multiples, les réglages de format de données sont généralement connus ou précisés; il suffit d'y faire correspondre ceux des unités asservies. En présence de longs parcours, il faut faire des essais pour déterminer le meilleur débit de transmission en changeant les paramètres de l'hôte ET des dispositifs asservis. Les configurations autres que 8N1 sont rares; on devrait donc l'utiliser pour décrire les bits de données, la parité et le nombre de bits d'arrêt.

Réseaux Ethernet

Les compteurs VerifEye communiquent sur Ethernet au protocole IEEE 802.3 à un débit de 10/100 Mbit/s. Lorsqu'on les vérifie, il faut notamment s'assurer que leur adresse IP est réglée sur une plage qui leur permet de communiquer avec un hôte (si l'adresse est statique) ou que l'option DHCP a été choisie. Cela permet au compteur de recevoir une adresse d'un serveur DHCP, comme on l'explique ci-dessous.

Adressage dynamique

Si le compteur VerifEye^{MD} est en mode DHCP quand on le démarre, ou si un câble Ethernet lui est connecté, il recevra son adresse d'un serveur fonctionnant sous ce protocole. Cette adresse apparaîtra à l'écran du compteur, ou peut être trouvée via le logiciel PMVU ou l'application Web. L'adresse IP attribuée au compteur est temporaire, et risque de changer à chaque cycle d'alimentation, ce qui le rend plus difficile à trouver sur le réseau. C'est pourquoi il est préférable de régler d'abord le compteur en mode DHCP pour permettre au serveur de lui donner une adresse dynamique, puis de rendre cette adresse statique une fois la connexion établie. Il est à noter que les compteurs VerifEye^{MD} sont en mode DHCP par défaut.

Adressage statique

Si un compteur VerifEye est doté d'une adresse IP statique, celle-ci doit être attribuée par le service de l'informatique, pour éviter que plusieurs dispositifs du réseau aient la même. On choisit normalement cette option quand une unité terminale doit toujours trouver le compteur à une adresse précise.

6.4 Vérification du protocole

Le protocole de réseau est prescrit quand on installe un compteur. Les réseaux Ethernet acceptent les protocoles BACnet IP et Modbus TCP, alors que les réseaux RS-485 prennent en charge BACnet MS/TP et Modbus RTU. Chaque combinaison d'interface et de protocole exige des réglages précis (voir ci-dessous). La présente section explique comment se servir de l'écran des compteurs ou des outils logiciels pour confirmer ou modifier rapidement les réglages pour qu'ils respectent une configuration donnée. On trouve des renseignements supplémentaires et des conseils d'optimisation dans la section sur la programmation de l'unité terminale (RTU).

6.5 Réglages Modbus

Réglages Modbus RTU

Sur un réseau Modbus, chaque dispositif asservi doit recevoir une adresse distincte. Cette adresse doit se situer entre 1 et 240 (les compteurs à 48 canaux doivent avoir 15 adresses audelà de l'élément A). L'adresse du compteur établit l'adresse de registre de l'élément A. On peut accéder aux éléments adjacents (B, C et D) en ajoutant « 1 » à l'adresse du compteur. Celle-ci doit être réglée de manière à correspondre à celle attendue par l'unité terminale (elle fait partie des spécifications du réseau). Par défaut, l'adresse de l'élément A est 1.

Réglages Modbus TCP

Les compteurs VerifEye utilisent le port 502, la norme de l'industrie, pour se connecter à un réseau Modbus. On peut modifier ce numéro de port dans les réglages avancés, mais s'il n'entre pas en conflit au niveau du système hôte, il est préférable de le garder. Si on doit le changer, il faut le faire via le logiciel PMVU.

6.6 Réglages BACnet

Sur un réseau **BACnet MS/TP ou IP**, chaque dispositif doit être doté d'un <u>identificateur unique</u>. On peut modifier cet identificateur au moyen d'un explorateur BACnet, du logiciel PMVU, de l'application Web ou de l'écran du compteur.

BACnet MSTP

Device Address : les compteurs VerifEye sont des dispositifs maîtres et doivent donc avoir une adresse MS/TP se situant entre 0 et 127. Cette adresse doit être unique sur le réseau.

Max Masters : le réglage par défaut est 127, et ne devrait normalement pas être changé.

Max Info Frame : le réglage par défaut est 1, et ne devrait normalement pas être changé.

BACnet IP

BACnet Port : le réglage par défaut est 47808, et ne devrait normalement pas être changé.

BBMD: le réglage par défaut des dispositifs de gestion BACnet/IP (Broadcast Management Device) est 0.0.0, mais on peut le modifier par le biais d'un outil logiciel pour permettre la recherche sur plusieurs réseaux.

6.7 Entrées d'impulsions

Les compteurs des séries 7000 et 7100 sont dotés de deux entrées d'impulsions. Le comptage par impulsions permet l'accumulation des données de consommation de n'importe quel compteur externe au moyen d'un contact sec (relais de forme A) ou de sorties à collecteur ouvert. Les entrées d'impulsions sont compatibles avec les compteurs « à basse vitesse ». La durée des impulsions doit être supérieure à 50 ms dans les états logiques faible et élevé, permettant une fréquence d'entrée maximale de 10 Hz.

On peut accéder aux valeurs de mise à l'échelle, de réinitialisation et accumulées via des registres (valeurs à l'étendue du système).

Se reporter à la liste des registres ou au logiciel PMVU pour obtenir plus d'information.

6.8 Alarmes (UPBD)

Les compteurs VerifEye^{MD} peuvent produire des alarmes configurées par les utilisateurs en cas de surintensités, de sous-intensités, de surtensions et de sous-tensions. Le logiciel PMVU permet d'effectuer le paramétrage sous forme de valeurs fixes ou de seuils en pourcentage de valeurs nominales.

Les réglages de durée de conditions d'alarme (alarm persistence) permettent d'ignorer celles qui sont temporaires, comme le démarrage d'un moteur, qui sont au-delà des seuils de déclenchement.

EXEMPLE: Si un compteur est perturbé par une décharge électrostatique, un réglage de courte durée pourrait engendrer des déclenchements d'alarme inopportuns. Quand une condition d'alarme dure aussi longtemps que l'intervalle fixé, le relais électromécanique de la plaquette de circuits imprimés est actionné.

Or, ce relais ne peut être réenclenché que par l'intermédiaire du registre Modbus/ l'objet BACnet 2451.

Si l'utilisateur le désire, il peut relier physiquement le relais d'alarme à un circuit d'interruption ou d'invitation à émettre de façon à fournir une réaction plus rapide que la fréquence d'interrogation du système hôte. L'état de chaque alarme est déterminé par les registres d'état de lecture.

Se reporter à la liste des registres ou au logiciel PMVU pour obtenir plus d'information.

REMARQUE : le relais d'alarme est conçu pour des connexions en courant continu à basse tension. L'utilisateur doit protéger l'interrupteur des surintensités quand il st fermé.

6.9 Alimentation auxiliaire de 12 V

Les compteurs VerifEye sont dotés d'une sortie de 12 V dérivée d'un enroulement auxiliaire de leur source d'alimentation de ligne. Ce courant de 12 V n'est pas régulé, mais il est protégé par un fusible à réarmement automatique. Il permet d'alimenter de l'équipement radio externe ou des capteurs analogiques, comme les dispositifs de boucle de courant de 4-20 mA. Si un courant pleine valeur est tiré de cette sortie, la tension minimale de fonctionnement de l'alimentation L1-L2 est de 100 V c.a.

6.10 Restrictions d'accès

Si on paramètre des niveaux de sécurité pour un compteur, aucune donnée ne s'affichera sur son écran ou à travers l'application Web avant qu'un NIP soit entré.

REMARQUE : les protocoles comme Modbus NE PERMETTENT AUCUN NIVEAU DE SÉCURITÉ où des signaux agissant comme maîtres peuvent récupérer ou entrer des données aux registres. Généralement, il faut connaître l'adresse IP ou l'identificateur d'unité asservie, de même que la liste de registres, ce qui a pour effet de décourager les effractions fortuites.

6.11 Protection par NIP de sécurité

Les compteurs VerifEye ont deux niveaux de protection par NIP que les utilisateurs peuvent paramétrer. La logique des NIP est décrite dans la figure ci-dessous. Par défaut, au démarrage ou après une période d'inactivité, le NIP est « 0000 », satisfaisant les exigences des réglages de sécurité en mode de lecture seule et de lecture/écriture des registres.

Utilisation des registres de permission

Les compteurs VerifEye utilisent un registre de **lecture seule** et un registre de **lecture/écriture** en guise de comparateurs pour les entrées d'utilisateur depuis le clavier de l'écran ou l'application Web. Les deux ont une valeur par défaut de « 0000 ». Cela veut dire qu'ils doivent être configurés séparément si on veut leur attribuer un NIP de lecture seule. Si on ne le fait pas, quand un utilisateur voudra restreindre l'accès en lecture seule en ne réglant qu'un NIP, ne sachant pas que le NIP par défaut répond encore aux critères de lecture/écriture, il augmentera accidentellement la capacité d'accès à ce registre. Le logiciel PMVU et l'application Web ne permettent pas cette condition, mais des programmeurs à distance ayant un accès direct aux registres pourraient la créer.

Registre de permissions de lecture seule

Un réglage en mode de **lecture seule** permet aux utilisateurs de voir les données et les configurations, sans pouvoir les modifier. Ce niveau d'autorisation peut convenir aux utilisateurs généraux, comme les propriétaires de bâtiment, qui pourraient ne pas connaître les détails de l'installation. On recommande d'utiliser le logiciel PMVU pour configurer les permissions, mais il est également possible de paramétrer un NIP de lecture seule à partir de l'application Web si un NIP de **lecture/ écriture** a déjà été entré (via l'écran du compteur ou de l'application elle-même).

Registre de permissions de lecture/écriture

Les permissions de **lecture seule** permettent de lire et d'écrire des éléments de configuration et de réinitialiser des NIP. Ce niveau d'autorisation est requis par les techniciens ou utilisateurs qui doivent pouvoir corriger des erreurs de paramétrage au compteur. Le NIP par défaut [0000] permet à de nouveaux utilisateurs de réinitialiser le NIP de **lecture/écriture** le logiciel PMVU ou l'application Web. Cette permission ne peut pas être réglée via l'écran u compteur.

Consultation des NIP sur un réseau Modbus ou BACnet

Le logiciel PMVU peut être utilisé pour consulter directement les NIP de lecture seule et de lecture/écriture (onglet Advanced/Passwords). Les valeurs affichées sont celles entrées dans l'application Web ou l'écran du compteur.

Les NIP sont aussi accessibles sous forme de registres, mais ils sont encodés de façon à ce qu'un utilisateur ne puisse pas les découvrir par le biais d'une unité terminale. Cela permet toutefois aux équipes de soutien de Leviton de trouver des NIP oubliés, si elles peuvent accéder au réseau.

Libre accès via le logiciel Power Meter Viewer Utilities (PMVU)

Le logiciel PMVU peut être utilisé pour consulter et enregistrer des données de configuration du compteur sans avoir à entrer d'identifiants.

REMARQUE : on recommande d'utiliser le logiciel PMVU pour tous les réglages d'accès. Il permet en effet aux utilisateurs de tester les NIP sans courir le risque de perdre leur capacité de les modifier.

6.12 Vérification de l'installation

Une fois le compteur configuré et en communication avec l'unité terminale, on recommande d'effectuer de simples tests pour confirmer que tous les transformateurs de courant sont sur les bonnes phases de tension et orientés de la bonne façon. Les recommandations qui suivent s'appliquent aux installations types. Les conditions spéciales, comme les moteurs sans charge, pourraient pointer vers une erreur d'installation qui n'existe pas. Un multimètre numérique peut alors servir à confirmer ou à infirmer ces conditions.

6.12.1 Vérification des phases

Les compteurs VerifEye^{MD} ont un algorithme PhaseCheck^{MC} qui leur permet de détecter des éléments qui semblent être sur la mauvaise phase (p. ex., un transformateur de courant associé à la mauvaise source de tension ou qui est physiquement sur le mauvais fil), en se basant sur des facteurs de puissance (FP) inférieurs à 0,55. On peut accéder à cette fonction depuis l'écran des compteurs en se rendant à l'option **VERIFY INSTALLATION**, puis en appuyant sur **ENTER**. L'écran affiche alors une liste des éléments ayant au moins un canal à faible facteur de puissance.

CHECK ELEMENTS

A EF

Se servir des boutons de navigation pour surligner un élément particulier, et appuyer sur **ENTER**, ou bien appuyer simplement sur **ENTER** et passer d'un élément à l'autre au moyen des flèches vers la gauche et la droite. Pour chaque élément qui apparaît sur la ligne supérieure de l'écran, on peut voir l'état des canaux comme étant bon (Good, FP > 0,55) ou mauvais (Bad, FP < 0,55).

ELEMENT F

CH1 Good

CH2 Bad

CH3 Bad

La présence de deux canaux marqués comme « Bad » indique souvent que deux transformateurs ont été accidentellement interchangés. Quand le facteur de puissance de tous les canaux actifs est supérieur à 0,55, l'écran affiche :

CHECK ELEMENTS

ALL CHANNELS GOOD

REMARQUE: la fonction PhaseCheck ne touche que les éléments activés. L'option **VIEW METER SETUP** de l'écran du compteur peut être utilisée pour voir lesquels l'ont été. La fonction joue un rôle informatif seulement. Il est possible que le facteur de puissance d'une charge donnée soit réellement moindre que 0,55, comme dans le cas des moteurs autonomes.

Le logiciel PMVU et l'application Web exécutent la fonction PhaseCheck en continu pour tous les éléments actifs, et indiquent la présence d'un faible facteur de puissance dans le tableau des valeurs en temps réel en marquant le texte en rouge ou en utilisant un indicateur de la même couleur.

6.12.2 Vérification des phases de transformateurs de courant au moyen de diagrammes de Fresnel

Quand un transformateur de courant (TC) n'est pas installé sur la bonne phase, le vecteur de courant pointe soit à 180° (systèmes biphasés), soit à 120° (systèmes triphasés) dans le sens opposé de l'angle de déplacement réel. Dans le cas de systèmes triphasés, cela peut entraîner une diminution marquée du facteur de puissance indiqué, et ce, même si le transformateur de courant a aussi été mis à l'envers. Quand le facteur de puissance de déplacement absolu d'une charge est inférieur à 0,55 (angle supérieur à 57° entre la tension et le courant), le compteur le signalera comme une erreur de phase. Le logiciel PMVU a une fonction de diagrammes de Fresnel (**Phasor Plot**) dont on peut se servir pour voir les vecteurs de tension et de courant d'un élément donné.

Recherche de faibles facteurs de puissance

- Logiciel PMVU : Real Time Values > tous les FP < 0,55 sont marqués en ROUGE.
- Application Web : Real Time Values > tous les FP < 0,55 sont marqués en ROUGE.
- Écran du compteur : Verify Installation > liste de tous les éléments ayant un FP < 0,55.

Quadrants de puissance électrique montrant des TC sur la mauvaise phase

6.12.3 Vérification de l'orientation de transformateurs de courant

Les compteurs VerifEye peuvent afficher la puissance et l'énergie de chaque quadrant électrique sous un registre différent. Quand un transformateur de courant (TC) est installé à l'envers, le vecteur de courant indiqué est orienté à 180° dans le sens opposé de l'angle de déplacement réel. Conformément aux définitions normalisées, la puissance en watts et les puissances réactives en volts-ampères du canal visé s'affichent avec un signe opposé à celui auquel pourrait s'attendre. Cela veut souvent dire que les registres d'importation afficheront zéro, alors que les registres d'exportation montreront une valeur.

REMARQUE: les transformateurs de courant installés à l'envers n'ont aucun impact sur l'amplitude du facteur de puissance. Si ce facteur est assez faible (> 0,7) et si la puissance est négative, cela peut indiquer que le transformateur n'est pas dans le bon sens, mais sur la bonne phase. Quand on découvre qu'un transformateur a été mis à l'envers une fois l'installation terminée, on peut en inverser le sens par le biais d'un registre de configuration conçu à cette fin; on l'appelle le « Flipper » et il se situe à 2226, 2234 et 2235. On peut aussi passer par les fonctions de configuration du compteur (**Meter Setup**) dans le logiciel PMVU.

Détermination du signe des puissances en watts (« + » pour les charges)

- Logiciel PMVU : Real Time Values > onfirmer le signe de puissance de tous les éléments.
- Application Web : Real Time Values > confirmer le signe de puissance de tous les éléments.
- Écran du compteur : Real Time Values >> confirmer le signe de puissance de tous les éléments.

6.13 Conventions relatives aux facteurs de puissance

Le facteur de puissance (FP) est le rapport entre un nombre avec signe (la puissance réelle) et un nombre sans signe (la puissance apparente). Cette différence a mené à de la confusion chez les clients. Les compteurs VerifEye^{MD} permettent de choisir entre deux conventions (ANSI ou IEEE). Pour IEEE, le signe du facteur de puissance correspond à celui de la puissance elle-même. Pour ANSI, un facteur de puissance positif indique un courant inductif alors qu'un facteur négatif indique un courant capacitif. On peut voir ci-dessous les relations entre les signes et les quadrants électriques pour chacune de ces conventions.

FP	Q1	Q2	Q3	Q4
ANSI	+	-	+	-
IEEE	+	-	-	+

6.14 Distorsion harmonique totale

Les compteurs VerifEye^{MD} peuvent montrer le taux d'harmoniques total (% T) d'un courant suivant la mesure de la puissance réalle, de la puissance réactive et de la puissance apparente, comme on peut le voir dans la figure ci-dessous. Cette méthode ne produit pas de chiffres ou de distribution, mais permet de visualiser l'ampleur de la distorsion harmonique.

Triangle de puissance (charges actives)

Quand la tension est sinusoïdale, cette mesure constitue une bonne façon de déterminer tant la puissance que le courant. Toutefois, si la forme d'onde de tension est perturbée, le taux d'harmoniques peut être trompeur. Le logiciel PMVU peut pousser l'analyse en prenant un échantillon de ses données brutes et en effectuant un traitement de signal numérique. Les résultats apparaissent dans un diagramme à barres et le taux peut ainsi être déterminé.

6.15 Assistance dans le traitement des données

Les compteurs VerifEye ont plusieurs registres conçus pour faciliter le traitement préalable ou après coup des données qui pourraient autrement nécessiter des opérations secondaires.

Seuils minimaux

Le rapport signal/bruit des compteurs est au-dessus de 80 dB à pleine échelle (1 partie par 10 000). Quand l'amplitude du signal est si faible que ce dernier ne peut plus être distingué du bruit, il est souvent préférable d'enregistrer un zéro plutôt qu'une petite valeur aléatoire. Les registres **Snap Threshold** (onglet **Advanced** dans le logiciel PMVU) indiquent au compteur les seuils minimaux où il faut le faire. Par défaut, les transformateurs de courant ont une valeur exprimée en pourcentage de 0,04 % à pleine échelle. Les seuils de tension sont en valeurs absolues, où le minimum recommandé est de 1,0 V.

Multiplicateurs

Les compteurs ont des registres qui leur permettent d'utiliser des transformateurs de potentiel et de courant en série. Ces registres permettent également qu'on effectue des réglages, notamment au niveau des rapports d'enroulement, qui éliminent le besoin d'effectuer des mises à l'échelle après traitement. Les réglages liés à la tension sont généraux, tandis que ceux liés aux transformateurs de courant peuvent être faits canal par canal. Le multiplicateur est un nombre à virgule flottante qui peut aussi être utilisé pour le calibrage après installation. Par défaut, leur valeur est de 1,0.

Déphasage des transformateurs de courant

Comme tous les transformateurs, ceux de courant subissent un faible courant magnétisant qui est déphasé par rapport à celui de mesure. Des registres de déphasage (Phase Shift) permettent d'effectuer des correctifs de +/- 3° par canal. Le logiciel PMVU charge le déphasage par défaut pour les types de transformateurs de courant utilisés dans une liste de sélection. Si on n'y trouve pas l'information voulue, il faut entrer le taux de précision en degrés (0. ex., 1 % de précision = 1.0°).

Demande

Les compteurs VerifEye suivent la demande en électricité dans une fenêtre mobile de 15 minutes. Les registres de demande de pointe (**Peak Demand**) et actuelle (**Present Demand**) montrent respectivement la consommation la plus élevée dans tous ces intervalles et la consommation moyenne dans le dernier. Le registre **Clear Peak Demand** sert à réinitialiser le détecteur de demande de pointe.

La présente section a été écrite pour les personnes qui programment des unités terminales (RTU) ou des systèmes hôtes; elle comprend des détails sur l'adressage des compteurs et des éléments, l'emplacement des registres, les formats de données et les exemples de protocoles.

7.1 Register Organization

Organisation des registres

Les compteurs VerifEye^{MD} communiquent par la lecture et l'écriture de registres. Ces registres sont organisés en groupes fonctionnels et adoptent le modèle d'interface Modbus de SunSpec.

- SunSpec Common Registers
- SunSpec TCP Network Stack Registers
- SunSpec Serial Interface Registers
- SunSpec Energy Meter

La liste complète des registres se trouve dans un fichier Excel sur la clé USB fournie ou à l'adresse suivante : https://www.leviton.com (section des téléchargements de la page des produits S7000/7100).

7.2 Définitions

Éléments

Sur plan physique, il décrit des groupes de trois sections de canal identifiées par des lettres (A, B, C et D) sur l'écran sérigraphique de la plaquette de circuits imprimés. Dans un système triphasé, ces sections correspondent à des circuits électriques.

Sur le plan logique, ce terme décrit le champ d'action d'une donnée, d'un registre ou d'un point (registre Modbus ou objet BACnet). On peut accéder à chaque point en choisissant une adresse Modbus, une plage d'objets BACnet ou **BACnet Structured View**. Les éléments ont des points qui font référence à des canaux individuels, ou encore à des sommes ou à des moyennes de ces canaux. Les registres qui contiennent des données inclusives de plus d'un canal sont désignés comme étant l'une ou l'autre (SUMS ou AVERAGES) des canaux d'un élément donné. Dans **BACnet Structured View**, un élément représente le niveau hiérarchique de points connexes.

Canaux

Sur la plaquette de circuits imprimés, les canaux sont identifiés par les abréviations CH1, CH2, CH3 et CH4; ils correspondent aux entrées physiques des transformateurs de courant. Dans un système triphasé, ils représentent la charge de courant sur une ligne de tension donnée. Dans un système monophasé, ils servent simplement à localiser les transformateurs. Les registres qui fournissent des données relatives à un canal individuel sont aussi décrits comme étant des éléments, puisqu'il existe une valeur unique pour chaque occurrence d'adresse asservie ou d'objet BACnet.

Système

Le terme « système » se rapporte aux registres qui définissent les caractéristiques de la plaquette de circuits imprimés dans son ensemble. Les registres « système » montrent la même valeur, quelle que soit l'adresse asservie. Dans **BACnet Structured View**, les points « système » sont regroupés.

7.3 Configuration de registres « éléments » ou « canaux » en fonction du type d'installation

Le logiciel PMVU exécute toutes les configurations d'élément pour former un système électrique valide. Les configurations effectuées à distance peuvent produire des résultats inattendus si celles qui ont été faites à l'interne sont incohérentes. Les tableaux qui suivent montrent comment configurer des registres « éléments » et « canaux » pour chaque type d'installation. Chaque registre devrait être écrit explicitement.

Le **ROUGE** dénote des valeurs requises, et le **VIOLET**, des valeurs par défaut suggérées, si ces données ne sont pas montrées.

Attribution d'adresses Modbus absolues/objets BACnet pour paramétrer les types d'installation

Adresses des registres						
Type de service	2207					
Entrée de tension	2217					
Description	2617					
	1					1
Canaux	Réf. tension	Type de TC	Portée	Déphasage	Multiplicateur des TC	Signe des TC
Canaux CH1	Réf. tension 2220	Type de TC 2223	Portée 2224,2225	Déphasage 2224,2225	Multiplicateur des TC 2221,2222	Signe des TC 2226
Canaux CH1 CH2	Réf. tension 2220 2229	Type de TC 2223 2232	Portée 2224,2225 2227,2228	Déphasage 2224,2225 2233,2234	Multiplicateur des TC 2221,2222 2230,2231	Signe des TC 2226 2235

Configurations

Type de service	1					
Entrée de tension	1 ou 2					
Description	31 carac.					
Canaux	Réf. tension	Type de TC	Portée	Déphasage	Multiplicateur des TC	Signe des TC
CH1	L1 – N [1]	mV [1] ou RoCoil [2]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1
CH2	L2 – N [2]	mV [1] ou RoCoil [2]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1
CH3	L3 – N [3]	mV [1] ou RoCoil [2]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1

3 Wire, 3 Phase (Delta)				
Service Type	2			
V_Input	1 or 2			
Description	31 Char			

4 fils, 3 phases (étoile)

Bien que les valeurs de CH2 soient calculées en usine, on recommande que les réglages des TC reflètent ceux de CH1 au lieu d'être laissés aux valeurs par défaut, afin de faciliter la validation de configuration de l'unité terminale.

	Channels	Volt Ref	СТ Туре	Range	Phase Shift	CT Multiplier	CT Sign
	CH1	L1 – N [1]	mV [1] or RoCoil [2]	Any > 0A	-3.0° to +3.0°	Any > 0 [1]	0 or 1
	CH2	L2 – N [2]	mV [1] or RoCoil [2]	Same as 1	Same as 1	Same as 1	0 or 1
	CH3	L3 – N [3]	mV [1] or RoCoil [2]	Same as 1	Same as 1	Same as 1	0 or 1
$\langle \rangle$							

2 fils, 1 phase (charge enfich	ée)					
Type de service	3					
Entrée de tension	1 ou 2		tuno do T(u doivont
Description	31 carac.	être mis hors tensio	être mis hors tension.			
Canaux	Réf. tension	Type de TC	Portée	Déphasage	Multiplicateur des TC	Signe des TC
CH1	TOUS [1-6]	mV [1] ou RoCoil [2]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1
CH2	TOUS [1-6]	mV [1] ou RoCoil [2]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1
CH3	TOUS [1-6]	mV [1] ou RoCoil [2]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1

3 fils, 1 phase (Biphasé)		
Type de service	4	
Entrée de tension	1 ou 2	
Description	31 carac.	,
Canaux	Réf. tension	
CH1	L1 – N <mark>[1]</mark>	Γ
CH2	L2 – N <mark>[2]</mark>	
CH3	L3 – N <mark>[3]</mark>	

Bien que les valeurs de CH3 ne soient pas utilisées dans les calculs, on recommande que les réglages des TC reflètent ceux de CH1 au lieu d'être laissés aux valeurs par défaut, afin de faciliter la validation de configuration de l'unité terminale.

Canaux	Réf. tension	Type de TC	Portée	Déphasage	Multiplicateur des TC	Signe des TC
CH1	L1 – N [1]	mV [1] ou RoCoil [2]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1
CH2	L2 – N [2]	mV [1] ou RoCoil [2]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1
CH3	L3 – N <mark>[3]</mark>	OFF [0]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1

Désactivé (hor	s tension)						
Type de service	5	Bien que les canaux	x désactivés	ne soient pa	s utilisés dans	les	
Entrée de tension	1 ou 2	calculs et qu'ils mor même des données	calculs et qu'ils montrent des valeurs de 0,0, ils contiennent quand même des données de configuration. On suggère de les régler à une valeur connue au lieu de les laisser à leurs valeurs par défaut afin de faciliter la validation par l'unité terminale.				
Description	31 carac.	afin de faciliter la va					
Canaux	Réf. tension	Type de TC	Portée	Déphasage	Multiplicateur des TC	Signe des TC	
CH1	L1 – N [1]	OFF [0]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1	
CH2	L2 – N [2]	OFF [0]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1	
CH3	L3 – N [3]	OFF [0]	Tout > 0A	-3.0° à +3.0°	Tout > 0 [1]	0 ou 1	

7.4 Configuration des registres « système » Attribution d'adresses Modbus

Configurations

Adresses des registres										
Description	2601									
Convention de signe pour les FP	2248									
Multiplicateur de V1	2203,2204									
Multiplicateur de V2	2205,2206									

absolues/obiets BACnet

Système	
Description	31 carac.
Convention de signe pour les FP	ANSI [1] ou IEEE[2]
Multiplicateur de V1	Tout > 0 [1]
Multiplicateur de V2	Tout > 0 [1]

7.5 Commandes en protocole Modbus

Si le compteur a été paramétré pour un réseau Modbus, il emploiera le protocole Modbus RTU et acceptera le jeu de commandes suivant.

Commandes Modbus pris	Commandes Modbus prises en charge												
Nom de la commande	Numéro de la commande (hex)	Description											
Read Holding Registers	03	Utilisée pour lire les valeurs des données du compteur VerifEye ^{MD}											
Write Single Register	06	Utilisée pour enregistrer un seul registre de stockage dans un compteur VerifEye ^{MD}											
Report Slave ID	11	Utilisée pour lire des données du compteur VerifEye ^{MD} identifié											

Adresse asservie

En mode Modbus/TCP, l'adresse asservie de base (ou adresse d'unité) est fixée à 1. Se reporter à la section relative aux protocoles sériels pour obtenir plus de renseignements sur la détermination de l'adresse asservie et la localisation de celle d'un élément de compteur particulier.

Entrée de chaînes Modbus

Les registres identifiés comme faisant partie de chaînes sont traités par le compteur seulement. Chaque registre d'une chaîne doit être rempli séquentiellement sans interruption, soit en utilisant une écriture de commande multiple, soit en envoyant des commandes uniques l'une après l'autre. Le caractère final d'une chaîne DOIT être NIL (ASCII 0). Le compteur ne traitera la chaîne entière que si ces deux conditions sont remplies (autrement, les données seront ignorées). Cette caractéristique a été mise en oeuvre pour offrir une protection contre les mises à jour partielles des réglages de réseau.

Commandes requérant une réinitialisation du processeur

L'adressage et la manipulation par registres des protocoles de communication exigent que le compteur exécute une réinitialisation partielle avant de prendre effet. Le registre 2100 peut recevoir une commande d'utilisateur pour faciliter ce processus. En mode BACnet, on écrit [1], tandis qu'en mode Modbus, on écrit [1234] pour effectuer une telle réinitialisation. Les compteurs mettent approximativement 10 secondes pour se réinitialiser.

Se reporter au document d'exemples Modbus sur le site Web de Leviton ou à la documentation électronique fournie pour obtenir plus de renseignements sur la programmation Modbus.

Exemple de chaîne 1 : changement d'adresse IP statique

Pour faire passer l'adresse IP d'un compteur de 192.168.2.8 à 192.168.2.9, il faut procéder comme suit.

REMARQUE : il faut toujours modifier l'adresse au complet. Si on ne fait que remplacer le « 8 » par un « 9 », on n'obtiendra pas le rendement voulu.

À l'intérieur, le compteur emploie un tampon à une seule chaîne pour toutes les opérations de registre; les entrées non spécifiques continueront de porter le tampon précédent jusqu'à qu'on le modifie expressément. Chaque registre doit être décrit du début à la fin du bloc.

Reg. (déc.)	1079	1080	1081	1082	1083	1084	1085	1086
Reg. (hex.)	04 37	04 38	04 39	04 3A	04 3B	04 3C	04 3D	04 3E
Valeur (car.)	'1' '9'	'2' '_'	'1' '6'	'8' '_'	'9' NIL	NIL NIL	NIL NIL	NIL NIL
Valeur (hex.)	31 39	32 28	31 36	38 2E	32 2E	39 00	00 00	00 00
	DÉPART							ARRÊT

Exemples précis - élément A réglé à l'identificateur 1

Il est à noter qu'en protocole Modbus, le CRC est d'abord communiqué au BMS, puis au BPS.

MODBUS RTU (SÉRIE) UTILISANT LE CODE DE FONCTION (CF) 6 / WRITE SINGLE REGISTER

ID	CF	ADR		DONNÉES		CRC		
01	06	04	37	31	39	EC	B6	
01	06	04	38	32	2E	9C	4B	
01	06	04	39	31	36	CD	71	
01	06	04	3A	38	2E	3B	2B	
01	06	04	3B	32	2E	6C	4B	
01	06	04	3C	39	00	5A	A6	
01	06	04	3D	00	00	19	36	
01	06	04	3E	00	00	E9	36	

MODBUS RTU (SÉRIE) UTILISANT LE CODE DE FONCTION (CF) 16 / WRITE MULTIPLE REGISTER

ID	CF	AD	R	Nºs I	RÉG.	ÉG. LG DO		NNÉES	0	DOM	NÉE	S 1	DONNÉES 2		DONNÉES 3	
01	10	04	37	00	08	10	31	39		32	2	E	31	36	38	2E
DOM	DONNÉES 4 DONNÉE		IÉES 5	ÉES 5 DONNÉES 6			DONN	IÉE	S 7	CRO	;]				
32	28	:	39	00	00		00	00	0	0	9B	99]			

MODBUS TCP (ETHERNET) UTILISANT LE CODE DE FONCTION (CF) 6 / WRITE SINGLE REGISTER

TXNII	<u>D</u>	<u>PROII</u>	<u>D</u>	<u>LG</u>		<u>ID</u>	<u>CF</u>	ADR		<u>DONNÉES</u> (le TxnID sera a	<u>rrbitraire)</u>
01	87	00	00	00	06	01	06	04	37	31	39
01	88	00	00	00	06	01	06	04	38	32	2E
01	89	00	00	00	06	01	06	04	39	31	36
01	8A	00	00	00	06	01	06	04	3A	38	2E
01	8B	00	00	00	06	01	06	04	3B	32	2E
01	8C	00	00	00	06	01	06	04	3C	39	00
01	8D	00	00	00	06	01	06	04	3D	00	00
01	8E	00	00	00	06	01	06	04	3E	00	00

MODBUS TCP (ETHERNET) UTILISANT LE CODE DE FONCTION (CF) 16 / WRITE MULTIPLE REGISTER

TXN	TXNID PROID		<u>LG</u>		ID	<u>CF</u>	<u>ADR</u>		<u>Nºs RÉG.</u>		<u>LG</u>	<u>DONNÉES O</u>		DONNÉES 1		
01	87	00	00	00	17	01	10	04	37	00	08	10	31	39	32	2E

<u>DONNÉES 2</u>		DONNÉES 3		<u>DONNÉES 4</u>		DONN	<u>ÉES 5</u>	DONN	<u>ÉES 6</u>	DONNÉES 7	
31	36	38	2E	32	2E	39	00	00	00	00	00

Exemple de chaîne 2 : description d'un élément

Pour faire passer la description d'un élément de « Bât princ 100 » à « Bât princ 101 », il faut procéder comme suit.

 $\label{eq:remains a set of the remains a set of t$

À l'intérieur, le compteur emploie un tampon à une seule chaîne pour tous les blocs de registre; les entrées non spécifiques continueront de porter le tampon précédent jusqu'à qu'on le modifie expressément.

Reg. (dec.)	2617	2618	2619	2620	2621	2622	2623	2624
Reg. (hex.)	0A 39	0A 3A	0A 3B	0A 3C	0A 3D	0A 3E	0A 3F	0A 40
Valeur (car.)	'M' 'a'	'i' 'n'	'S' ''	'B' 'I'	'd' ''	'1' '0'	'1' Nil	NilNil
Valeur (hex.)	4D 61	69 6E	73 20	62 6C	64 20	31 30	31 20	00 00
	DÉPART							ARRÊT
D (1)	0005	0000	0007	0000	0000	0000	0004	0000
Reg. (dec.)	2625	2626	2627	2628	2629	2630	2631	2632
Reg. (hex.)	0A 41	0A 42	0A 43	0A 44	0A 45	0A 46	0A 47	0A 48
Valeur (car.)	NilNil	NilNil	NilNil	NilNil	NilNil	NilNil	NilNil	NilNil
Valeur (hex.)	00 00	00 00	00 00	00 00	00 00	00 00	00 00	00 00
	DÉPART							ARRÊT

Exemples précis – élément A réglé à l'identificateur 1

MODBUS RTU (SÉRIE) UTILISANT LE CODE DE FONCTION (CF) 6 / WRITE SINGLE REGISTER

ID	<u>CF</u>	<u>ADR</u>		<u>DONNÉES</u>		CRC		
01	06	0A	39	4D	61	AE	A7	
01	06	0A	ЗA	69	6E	05	A3	
01	06	0A	3B	73	20	DF	37	
01	06	0A	3C	62	6C	63	53	
01	06	0A	3D	64	20	30	C6	
01	06	0A	3E	31	30	FE	5A	
01	06	0A	3F	31	20	AE	56	
01	06	0A	40	00	00	8B	C6	
01	06	0A	41	00	00	DA	06	
01	06	0A	42	00	00	2A	06	
01	06	0A	43	00	00	7B	06	
01	06	0A	44	00	00	CA	07	
01	06	0A	45	00	00	9B	C7	
01	06	0A	46	00	00	6B	C7	
01	06	0A	47	00	00	3A	07	
01	06	0A	48	00	00	0A	04	

MODBUS RTU (SÉRIE) UTILISANT LE CODE DE FONCTION (CF) 16 / WRITE MULTIPLE REGISTER

Ī	<u>D</u>	<u>CF</u>	AD	R	<u>Nºs</u> R	ÉG.	<u>LG</u>	DONN	DONNÉES OO		NÉES 01	ÉES 01 DONI		DON	NÉES	<u>03</u>
C)1	10	0A	39	00	10	20	4D	61	69	6E	73	20	62	60	;
	DONNÉES 04		DON	NÉES	<u>05</u>	DONNÉES 06		DONNÉES 07		DONN	DONNÉES 08		ÉES 09			
	64		20	31	30		31	20	00	00	00	00	00	00]	
<u>D</u>	DONNÉES 10 DONI			DONN	ÉES 11		DONNÉE	<u>S 12</u>	DONNÉ	<u>ES 13</u>	DONNÉ	<u>ES 14</u>	DONNÉ	<u>ES 15</u>	CRC	
0	0	00)	00	00	0	00	00	00	00	00	00	00	00	ЗA	18

MODBUS TCP (ETHERNET) UTILISANT LE CODE DE FONCTION (CF) 6 / WRITE SINGLE REGISTER

TXNI	<u>)</u>	<u>PROI</u>	<u>D</u>	<u>LG</u>		<u>ID</u>	<u>CF</u>	<u>ADR</u>	•	DONNÉES (le T sera arbitraire	<u>xnID</u>
01	87	00	00	00	06	01	06	0A	39	4D	61
01	88	00	00	00	06	01	06	0A	3A	69	6E
01	89	00	00	00	06	01	06	0A	3B	73	20
01	8A	00	00	00	06	01	06	0A	3C	62	6C
01	8B	00	00	00	06	01	06	0A	3D	64	20
01	8C	00	00	00	06	01	06	0A	3E	31	30
01	8D	00	00	00	06	01	06	0A	3F	31	20
01	8E	00	00	00	06	01	06	0A	40	00	00
01	8F	00	00	00	06	01	06	0A	41	00	00
01	90	00	00	00	06	01	06	0A	42	00	00
01	91	00	00	00	06	01	06	0A	43	00	00
01	92	00	00	00	06	01	06	0A	44	00	00
01	93	00	00	00	06	01	06	0A	45	00	00
01	94	00	00	00	06	01	06	0A	46	00	00
01	95	00	00	00	06	01	06	0A	47	00	00
01	96	00	00	00	06	01	06	0A	48	00	00

MODBUS TCP (ETHERNET) UTILISANT LE CODE DE FONCTION (CF) 16 / WRITE MULTIPLE REGISTER

TX	NID	PROID	1	LG		ID	<u>CF</u>	AD	R	<u>Nos</u>	RÉ(<u>}.</u>	<u>LG</u>	DON	NÉES OO	DON	NÉES 01
01	87	00	00	00	27	01	10	10 04		00	1	0	20	4D	61	69	6E
[DONN	ÉES 02	D	ONNÉ	ES 03	DON	NÉES	<u>04</u>	<u>DONI</u>	IÉES O	15	<u>D(</u>	DNNÉ	<u>ES 06</u>	DONN	ÉE <u>S 07</u>]
	73 20 62 6C		64 20			31 30		31		20	00	00]				
[DONNÉES 08 DONNÉES 09		DONN	DONNÉES 10		DONN	ÉES 1	1	<u>D0</u>	NNÉE	<u>S 12</u>	DONNÉ	ES 13				
	00	00 00 00 00		00	00 00			00 00			00 00		00 00				
[DONN	DONNÉES 14 DONNÉES 15															
[00	00	0	0	00												

7.6 Entrées de registre à virgule flottante

Les compteurs VerifEye^{MD} emploient des nombres à virgule flottante de 32 bits (IEEE 754) pour indiquer des résultats et enregistrer des valeurs de registre modifiables par les utilisateurs comme la plage de transformateurs de courant (TC), les facteurs d'échelle des TC et des transformateurs de potentiel, etc. Or, comme ces registres requièrent deux adresses Modbus de 16 bits, on doit y accéder séquentiellement, sans interruption.

REMARQUE : la raison pour laquelle on ne met pas à jour les registres à virgule flottante comme entités distinctes de 16 bits est que les valeurs intérimaires (quand le nombre est moitié entré) peuvent être valides, mais inconnues. En exigeant que les registres MPS et MMS soient écrits séquentiellement, on prévient l'application de facteurs d'échelle très grands et potentiellement inconnus aux données du compteur entre les entrées.

Sélection du type de données

REMARQUE : les programmes de RTU prennent souvent en charge de nombreux types de données, y compris les nombres à virgule flottante. Les données des compteurs VerifEye sont enregistrées sous forme de MPS et de MMS, ce qui pourrait prendre un certain temps à comprendre lors de la configuration des unités terminales. L'option « Float ABCD » est un exemple de manière d'identifier l'ordre logique des octets.

On s'attend à ce que les programmeurs de lignes de commande ou les rédacteurs de scripts préfèrent entrer les données en format hexadécimal. Les utilisateurs ayant moins de connaissances en la matière et utilisant des logiciels comme Modbus Utilities, BACnet Utilities ou PMVU pourraient quant à eux privilégier le format décimal. L'exemple qui suit explique la procédure étape par étape pour convertir l'information trouvée dans les manuels de l'utilisateur (décimale) en un format hexadécimal qui devrait couvrir les niveaux de complexité les plus élevés.

Entrée de données à virgule flottante au moyen de scripts

Voici la marche à suivre pour régler la pleine échelle du TC du canal 1 à une valeur de 100,00 A pour un compteur ayant un élément à l'adresse asservie n° 1.

- 1. Convertir la valeur « 100,00 » en format IEEE 754 à virgule flottante en l'entrant dans un utilitaire de conversion trouvé sur l'internet ou dans ViewPoint HD.
 - a) Utilitaire trouvé sur l'internet. On peut voir ci-dessous la représentation de « 100,00 » sous forme de nombre de 16 bits à virgule flottante (0x42C8 0x0000). Ces deux groupes de caractères correspondent respectivement au MPS et au MMS.

	Sign	Exponent		Mantissa
Value:	+1	26		1.5625
Encoded as:	0	133		4718592
Binary:		000000		
		You entered	100.00	
		Value actually stored in float:	100	+1
		Error due to conversion:	0.00	
		Binary Representation	010000	010110010000000000000000000000000000000
		Hexadecimal Representation	0x42c8	0000

b) Leviton PMVU

c) Si on ne peut accéder à un utilitaire sur l'internet, on peut utiliser une fonction avancée du logiciel PMVU. Il suffit d'entrer « 100 » et d'appuyer sur le bouton « Convert to Modbus Integers ».

Floating Po	int (IEEE 754) to Modbus Integer Converter		
Floating P	oint Number		MSW	LSW
100		Convert to Modbus Integers	17096	0
MSW	LSW		Floating Po	oint #
17096	0	Convert to Floating Point	100	

La fonction déterminera quelles valeurs (ici, « 17096 » et « 0 » en valeurs décimales) iront dans les registres MPS et MMS, respectivement. S'il faut obtenir une valeur en format hexadécimal, on peut faire appel à un utilitaire comme la calculatrice de Windows (mode d'affichage Programmeur, voir ci-dessous).

Calcul	lator		-		×	Calcula	tor		-		×
=	Progra	mmei	ſ			=	Progra	mmei	r		
				17,	096						0
HEX	42C8					HEX	0				
DEC	17,096					DEC	0				
OCT	41 310					OCT	0				
BIN	0100 0010	1100 10	00			BIN	0				
#		QW	ORD	MS	M*	(U)	88	QW	ORD	MS	Μ*
Lsh	Rsh	Or	Xor	Not	And	Lsh	Rsh	Or	Xor	Not	And
Ť	Mod	CE	с	8	÷	Ŷ	Mod	CE	с	•	$\frac{1}{2}$
A	В	7	8	9	×	A	В	7	8	9	×
		4	5	6	-	С		4	5	6	-
E	(F	1	2	3	+	E	Ŧ	1	2	3	+
()	±	0		=	()	±	0		=

Après la conversion, « 0x42C8 0x0000 » est la valeur des registres MPS et MMS.

- Trouver les registres de configuration associés à la valeur de pleine échelle du TC du canal 1 en se reportant à la liste Excel qui se trouve sur la clé USB ou passant par le logiciel PMVU pour déterminer l'adresse des données affichées.
 - a) Ouvrir la liste des registres en format Excel et trouver les registres voulus sous USER CONFIG POINTS.

Modbus Register Name	Modbus Registe	Absolute Address
CH1 CT Full Scale Rating (MSW)	2218	42219
CH1 CT Full Scale Rating (LSW)	2219	42220

b) Se connecter au compteur visé depuis le logiciel PMVU. Se rendre à l'onglet Meter Setup et appuyer sur l'icône « ? ». Passer le pointeur de la souris au-dessus de la portion de configuration de l'élément A. Cela lancera l'outil d'exploration de données permettant de trouver l'adresse des registres commandés ou affichés depuis la fenêtre active.

Les registres de commande voulus sont le 2218 (MPS) et le 2219 (MMS).

Convertir ces adresses en valeurs hexadécimales au besoin.

Calcu	lator		-		×	Calcu	lator	-		×	
=	Progra	imme	r			=	Progra	mmei	r		
				2,	,218					2	219
HEX	8AA					HEX	8AB				
DEC	2,218					DEC	2,219				
OCT	4 252	1010				OCT	4 253				
BIN	1000 1010	1010				BIN	1000 1010	1011			
		QV	ORD	MS	M*	-	5.	QW	ORD	MS	.M*
Lsh	Rsh	Or	Xor	Not	And	Lsh	Rsh	Or	Xor	Not	And
\uparrow	Mod	CE	с	0	÷	Ŷ	Mod	CE	с	8	÷
A	В	7	8	9	×	A	В	7	8	9	×
	Ď	4	5	6	-	c	D	4	5	6	-
E	F	1	2	3	+	E	F	1	2	3	+
()	±	0		=	()	±	0		=

 Calculer le CRC-16 (Modbus RTU). Comme il en existe plusieurs variantes, il faut s'assurer qu'il s'agit bien d'une version pour Modbus. C'est le BMS du CRC qui est entré en premier.

Entrer l'expression complète dans un calculateur de CRC (pour ce faire, les utilitaires sur le Web peuvent s'avérer utiles).

Input Data	CRC-16 (Modbus)
01 06 08 AA 42C8	0xBC9A

4. Mise en place.

MODBUS RTU (SÉRIE) UTILISANT LE CODE DE FONCTION (CF) 6 / WRITE SINGLE REGISTER

<u>ID</u>	<u>CF</u>	ADR		DON	INÉES	CRC	(ordre interchangé)			
01	06	08	AA	42	C8	98	BC			
01	06	08	AB	00	00	FA	4A			

MODBUS RTU (SÉRIE) UTILISANT LE CODE DE FONCTION (CF) 16 / WRITE MULTIPLE REGISTER

	<u>ID</u>	<u>CF</u>	ADR		<u>№ RÉG.</u>		<u>LG</u>	<u>Données o</u>		DON	NÉES	<u>CRC</u>	
l	01	06	08	AA	00	02	04	42	C8	00	00	8B	EE

MODBUS TCP (ETHERNET) UTILISANT LE CODE DE FONCTION (CF) 6 / WRITE SINGLE REGISTER

<u>txn</u>	<u>ID</u>	<u>PRO</u>	<u>ID</u>	<u>LG</u>		<u>ID</u>	<u>CF</u>	<u>ADR</u>		<u>DONNÉES</u> (le T sera arbitraire)	xnID
01	87	00	00	00	06	01	06	08	8 AA 42		C8
01	88	00	00	00	06	01	06	08	AB	00	00

MODBUS TCP (ETHERNET) UTILISANT LE CODE DE FONCTION (CF) 16 / WRITE MULTIPLE REGISTER

TXN	ID	PRO	ID	<u>LG</u>		<u>ID</u>	<u>CF</u>	ADR		<u>№ RÉG.</u>		<u>LG</u>	DON	INÉES O	ES O DONNI	
01	87	00	00	00	0B	01	10	08	AA	00	02	04	42	C8	00	00

Commandes requérant une réinitialisation du processeur

L'adressage et la manipulation par registres des protocoles de communication exigent que le compteur exécute une réinitialisation partielle avant de prendre effet. Le registre 2100 peut recevoir une commande d'utilisateur pour faciliter ce processus. En mode BACnet, on écrit [1], tandis qu'en mode Modbus, on écrit [1234] pour effectuer une telle réinitialisation. Les compteurs mettent approximativement 10 secondes pour se réinitialiser.

Se reporter au document d'exemples Modbus sur le site Web de Leviton ou à la documentation électronique fournie pour obtenir plus de renseignements sur la programmation Modbus.

7.7 BACnet

Le protocole BACnet (Building Automation and Control Network) a été élaboré sous les auspices de l'American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) et est reconnu comme étant une norme américaine, européenne et ISO à l'échelle mondiale.

Identificateur de dispositif BACnet : chacun des identificateurs sur un réseau BACnet soit être unique. Se reporter à la section sur les protocoles sériels et sur la liste des registres pour obtenir des renseignements supplémentaires.

Modèles sériels : la version sérielle des compteurs VerifEye^{MD} prend en charge les propriétés max_master, MS/TP address, max_info_frames accessibles en écriture dans l'objet dispositif de réseaux MS/TP. Pour un rendement optimal, max_master devrait être réglée à l'adresse MAC la plus élevée du réseau. L'adresse MS/TP (objet 1069) doit être unique. Dans la plupart des installations, la propriété max_info_frames n'a pas besoin d'être modifiée.

Modèles Ethernet : la version Ethernet des compteurs VerifEye^{MD} peut être enregistrée comme un des objets étrangers (Foreign Devices) d'un BBMD. Un BBMD est un dispositif de gestion des communications (BACnet/IP Broadcast Management Device). L'adresse IP du BBMD peut être réglée dans le logiciel PMVU ou via une chaîne de caractères (objet 2264). Une valeur de 0.0.0.0 désactive l'enregistrement de l'objet étranger. Cette procédure requiert une réinitialisation partielle du processeur.

Structured View dans BACnet

Les compteurs VerifEye^{MD} prennent en charge l'organisateur d'objets Structured View. Si l'outil d'exploration est doté de cette fonction, les objets seront groupés de manière logique en éléments qui pourront être nommés de façon à refléter des emplacements électriques ou physiques, et seront suivis d'objets « système », comme on peut le voir ci-dessous (compteur ayant les éléments « A » à « D »).

Address	Space : 5 objects
÷	Element A (Structured_View:1)
÷	Element B (Structured_View:2)
÷	Element C (Structured_View:3)
÷	Element D (Structured_View:4)
÷	System Settings (Structured_View:

Dans chacun des éléments, Structured View énumère les objets BACnet par type, puis par valeur numérique, comme on le voit ci-dessous. Les objets de ces éléments sont groupés en plages de nombres donnés. Élément A (comme les objets « système ») a une plage de 0 à 9999, élément B de 10000 à 19999, élément C de 20000 à 29999... jusqu'à l'élément P d'un modèle VerifEye 48, qui va de 150000 à 159999. Certains outils d'exploration BACnet ont des capacités de tri additionnelles.

Types d'objets BACnet pris en charge par VerifEye ^{MD}				
Type d'objet	Abréviation	Utilisation type		
Analog Input:	AI	Lectures de compteur (entrées numériques à virgule flottante)		
Analog Value:	AV	Réglages analogiques (sorties numériques à virgule flottante)		
Binary Value:	BV	Réglages booléens		
Multi State Value:	MSV	Réglages successifs		
BitString Value:	BSV	Réglages et mots d'état de champs de bits		
Positive Integer Value:	PIV	Réglages à plage restreinte		
Character String Value:	CSV	Réglages de chaînes de texte		

8 ANNEXE A: NAVIGATION DANS LES MENUS DE L'ÉCRAN DES COMPTEURS

À propos du compteur

On trouve aux pages suivantes tous les éléments des menus de l'écran des compteurs VerifEye. C'est l'élément About Meter qui est le plus utilisé; on l'atteint en appuyant cinq fois ou en remontant d'un cran (menu déroulant).

Menu principal

View Communications Real Time Values View Meter Setup Verify Installation Log In/Out About Meter

Le menu **About Meter** contient les éléments suivants, affichés sur quatre lignes, auxquels on peut accéder en utilisant les flèches de l'affichage vers le haut ou le bas.

S7000 v2.00 Serial: P121501001 LAN: Connected IP: 10.1.1.1 MC 00:0D:63:00:00:00 Line Frequency: 60.0 Obvius Copyright (c) 2018 Protocol: Modbus Modbus Address: 1 Modbus Port: 502 MSTP Address: 1 Baud Rate: 9600 DHCP: ON BACnet Port: 47808 BACnet DevID: 527000 Pulse In 1: 0.0 Pulse In 2: 0.0 System Descriptor: 70x48 UTC Date / Time: 2018-04-24 10:04:08

Modèle et version Numéro de série État de la connexion au réseau local Adresse IP active Adresse MAC Fréquence de ligne actuelle Nom du fabricant Avis de droit d'auteur Protocole de communication Adresse Modbus **Port Modbus** Adresse MSTP Débit en bauds (RS-485) **Réglage DHCP actif** Port BACnet Identificateur de dispositif BACnet Accumulateur d'impulsions du canal 1 Accumulateur d'impulsions du canal 2 Description du système entrée par l'utilisateur Heure actuelle en TUC (GMT)

9 ANNEXE B : FICHE TECHNIQUE

Caractéristiques principales

Caractéristiques	Description
Types d'installation	Monophasée, biphasée, triphasée à quatre fils (en étoile), triphasée à trois fils (en triangle)
Canaux d'entrée de tension	90-346 V c.a. L-N, 600 V L-L, de catégorie III, deux entrées de référence indépendantes
Canaux de courant	3, 12, 24, or 48 canaux, 0,525 V c.a. max., TC de 333 mV, 0-4 000 A selon le transducteur de courant
Entrée de courant maximale	150 % des valeurs nominales du transducteur de courant (TC à mV) pour assurer la précision. Mesure jusqu'à 4 000 A avec des TC RoCoil.
Types de mesure	Valeur efficace réelle (moyenne quadratique) via un traitement numérique du signal (TNS) à haute vitesse, échantillonnage en continu
Fréquence de ligne	50-60 Hz (plage mesurable de 45-70 Hz) – mesure prise sur L1-N
Alimentation	De L1 à L2. 90-600 V c.a. (moyenne quadratique), catégorie III, 50/60 Hz, 500 mA c.a. max. Les sorties auxiliaires de 12 V requièrent une tension d'entrée minimale de 100 V c.a.
Protection c.a.	Fusible de 0,5 A à capacité de limitation de 200 kA
Sortie d'alimentation	Sortie non régulée de 12 V c.c., 200 mA, fusible à réinitialisation automatique
Échantillonnage des formes d'onde	1.8 kHz
Vitesse de mise à jour des paramètres	1 seconde
Valeurs mesurées	V, A, KW, kVAR, kVA, FP (apparente), FP (active), demande en kW, demande en kVA, importation (réception) en kWh, exportation (transmission) en kWh, kWh nets, importation (réception) en kVAh, exportation (transmission) en kVAh, kVAh nets, importation (réception) en kVARh, exportation (transmission) en kVARh, kVARh nets, DHT, thêta et fréquence. Tous les paramètres sont pour chaque phase et l'ensemble du système.
Précision	0,2 %, ANSI C12.20-2010 (classe 0.2)
Résolution	Valeurs en format IEEE-754 à virgule flottante simple précision (32 bits)
Interface	Écran rétroéclairé tricolore de quatre lignes (PhaseChek ^{MC})
Entrées d'impulsions	VerifEye ^{MD} 70D12, 70N12, 71D12 – 4 entrées VerifEye ^{MD} 70D48, 70N48, 71D48 – 2 entrées Tension d'émission de 3,3 V (limitation de courant) à la sortie d'impulsions à contact sec du client. Fréquence d'impulsion maximale de 10 Hz (délai de transition de 50 ms min.)
Sortie d'alarme	Surtension/sous-tension et surintensité/sous-intensité (relais unipolaire bidirectionnel de 30 V c.c.)

9 ANNEXE B : FICHE TECHNIQUE

Caractéristiques de communication

Caractéristiques	Description
Matériel	RS-485, Ethernet et USB (pour la configuration seulement)
Protocoles pris en charge	Modbus RTU ou BACnet (protocole internet à passage de jeton d'unité maîtresse, ou MS/TP) Modbus (modèle SunSpec IEEE-754 à virgule flottante simple précision) Modbus TCP BACnet IP
Longueur de parcours de communication (RS-485)	1 200 m en tout, à une plage de données de 100 kbit/s ou moins
Unités de charge RS-485	1/8
Vitesse de transmission (bauds)	Modbus : 9 600 (par défaut), 19 200, 38 400, 57 600, 76 800, 115 200 BACnet : 9 600 (par défaut), 19 200, 38 400, 76 800
Bits de données	8
Parité	Aucune, paire ou impaire
Bits d'arrêt	2, 1
Terminaisons	Aucune

Caractéristiques physiques

Caractéristiques	Description
Calibres et tensions des fils	12-22 AWG (600 V c.a.); les fils à tension élevée doivent être de calibre 14 AWG ou plus gros, et avoir une tension nominale de 600 V c.a.
Fixation	Dans un boîtier ou sur un panneau
Couvercle du compartiment à tension élevée	IP30 (version encastrée)
Température de fonctionnement	-20 à 60 °C (-4 à 140 °F) – plus la température est basse, plus il faudra de tension pour alimenter la plaquette
Humidité	5 à 95 %, sans condensation
Boîtier	Plastique ABS à cote d'inflammabilité 94-V0, raccords conçus pour des conduits de 2,5 cm (1 po)
Dimensions (longueur sur largeur sur hauteur)	33,7 x 25,1 x 8,0 cm (13,3 x 9,9 x 3,2 po) [versions en boîtier] 26,2 x 24,1 x 8,0 cm (10,3 x 9,5 x 3,2 po) [versions sur plaque]
Dimensions de la PCI (longueur sur largeur sur hauteur)	21,6 x 21,6 x 6,4 cm (8,5 x 8,5 x 2,5 po)

Exigences minimales du logiciel Power Meter Viewer Utilities (PMVU)

Caractéristiques	Description
Système d'exploitation	Windows ^{MD} 7, Windows ^{MD} 8 ou Windows ^{MD} 10
Port de communication	USB ou Ethernet

10 DÉCLARATIONS STANDARD ET GARANTIE

DÉCLARATION DE CONFORMITÉ AUX EXIGENCES DE LA FCC ET DES NMB

Ce produit est conforme aux exigences de la partie 15 des règlements de la FCC ainsi qu'aux cahiers des charges sur les normes radioélectriques d'ISDE pour les produits exempts de licence. Son fonctionnement est soumis aux deux conditions suivantes : (1) il ne cause aucun brouillage préjudiciable et (2) il ne soit pas affecté par les interférences d'autres dispositifs susceptibles notamment d'en perturber le fonctionnement. Toute modification apportée sans l'autorisation expresse de Leviton pourrait avoir pour effet d'annuler les droits d'utilisation du produit. Ces normes ont été élaborées dans le but d'assurer une protection raisonnable contre le brouillage préjudiciable quand l'équipement est utilisé en milieu commercial. Cet équipement génère, utilise et peut irradier de l'énergie haute fréquence; s'il n'est pas installé et utilisé conformément aux directives, il peut engendrer des perturbations susceptibles de brouiller les radiocommunications. Il est cependant impossible de garantir l'absence de telles perturbations dans une installation donnée. Si cet équipement est source de parasites au niveau des récepteurs radio ou des téléviseurs, ce qu'on peut déterminer en le mettant sous et hors tension, on recommande à l'utilisateur de rectifier la situation en adoptant une ou plusieurs des mesures suivantes :

- réorienter ou déplacer l'antenne réceptrice;
- augmenter la distance entre l'équipement et le récepteur;
- brancher l'équipement à une prise sur un circuit autre que celui où est branché le récepteur;
- consulter le détaillant ou un technicien expérimenté en matière de radios ou de téléviseurs.

Cet appareil numérique de classe A est conforme à la norme canadienne CAN ICES-3(A)/NMB- 3(A). DÉCLARATION DE CONFORMITÉ DU FABRICANT AUX EXIGENCES DE LA FCC

Les modèles 71D03, 71D12, 71D24, 71D48, 70D03, 70D12, 70D24, 70D48, 70N12, 70N24, et 70N48 sont vendus par Leviton Manufacturing Inc. 201 N Service Rd, Melville, NY 11747. Les produits décrits aux présentes sont conformes aux exigences de la partie 15 des règlements de la FCC. Ils peuvent être utilisés à condition qu'ils (1) ne causent aucun brouillage préjudiciable et (2) ne soient pas affectés par les interférences reçues d'autres dispositifs susceptibles notamment d'en perturber le fonctionnement.

AVIS RELATIF AUX MARQUES:

L'utilisation ici de marques de commerce ou de service, d'appellations commerciales ou encore de noms de produits d'entreprises tierces n'est qu'à titre informatif; leur intégration aux présentes ne saurait être interprétée comme un témoignage d'affiliation, de parrainage ou d'appui envers leurs propriétaires respectifs. PhaseChek et TouchSāf est de marques de commerce de DENT Instruments. Modbus est une marque de commerce de Schneider Electric USA, Inc., et BACnet^{MC} est une marque de commerce de l'ASHRAE.

Les brevets associés à l'équipement décrit aux présentes, le cas échéant, se trouvent à l'adresse leviton.com/patents. Leviton Manufacturing Co., Inc.

201 North Service Road, Melville, NY 11747

Téléphone : 1-800-824-3005

Rendez-vous au site Web de Leviton au www.leviton.com.

© 2023 Leviton Manufacturing Co., Inc. Tous droits réservés.

Caractéristiques et prix sous réserve de modifications sans préavis.

GARANTIE LIMITÉE DE 5 ANS ET EXCLUSIONS

Leviton garantit au premier acheteur, et uniquement au crédit du dit acheteur, que ce produit ne présente ni défauts de fabrication ni défauts de matériaux au moment de sa vente par Leviton, et n'en présentera pas tant qu'il est utilisé de façon normale et adéquate, pendant une période de 5 ans suivant la date d'achat. La seule obligation de Leviton sera de corriger les dits défauts en réparant ou en remplaçant le produit défectueux si ce dernier est retourné port payé, accompagné d'une preuve de la date d'achat, avant la fin de la dite période de 5 ans, à la Manufacture Leviton du Canada S.R.I., au soin du service de l'Assurance Qualité, 165 boul. Hymus, Pointe-Claire, (Québec), Canada H9R 1E9. Par cette garantie, Leviton exclut et décline toute responsabilité envers les frais de main d'oeuvre encourus pour retirer et réinstaller le produit. Cette garantie sera nulle et non avenue si le produit est installé incorrectement ou dans un environnement inadéquat, s'il a été surchargé, incorrectement utilisé, ouvert, employé de façon abusive ou modifié de quelle que manière que ce soit, ou s'il n'a été utilisé ni dans des conditions normales ni conformément aux directives ou étiquettes qui l'accompagnent. Aucune autre garantie, explicite ou implicite, y compris celle de qualité marchande et de conformité au besoin, n'est donnée, mais si une garantie implicite est requise en vertu de lois applicables, la dite garantie implicite, y compris la garantie de qualité marchande et de conformité au besoin, est limitée à une durée de 5 ans. Leviton décline toute responsabilité envers les dommages indirects, particuliers ou consécutifs, incluant, sans restriction, la perte d'usage d'équipement, la perte de ventes ou les manques à gagner, et tout dommage-intérêt découlant du délai ou du défaut de l'exécution des obligations de cette garantie. Seuls les recours stipulés dans les présentes, qu'ils soient d'ordre contractuel, délictuel ou autre, sont offerts en vertu de cette garantie,

Ligne d'assistance technique : 1-800-405-5320 (Canada seulement) www.leviton.com

