High Bay/Low Bay Passive Infrared Occupancy Sensor and Offset Adapter

INSTALLATION INSTRUCTIONS

FEATURES
- Fixture or electrical box mounted Passive Infrared Occupancy Sensor
- 360 degree lenses for field-of-view (included):
 - Blue Lens = 8-20ft mounting height
 - White Lens = 20-40ft mounting height
- Optional peal and stick mask kit
- Offset Adapters (sold separately)

DESCRIPTION
Leviton's High Bay/low Bay Passive Infrared Occupancy Sensors, Cat. No. OSFHU-ITW and OSFHU-CTW (cold storage), are specifically designed for high mounted areas such as warehouses, manufacturing, and other high ceiling applications. The OSFHU-ITW installs directly to an industrial luminaire or electrical junction box. It is a self-contained sensor and relay that detects motion using the passive infrared (PIR) to sense sources (such as a person entering a room) within its field-of-view (monitored space) and automatically switches lights ON and OFF accordingly.

Ratings:
- 800VA-6.67A @ 120VAC, 1/4 HP, 50-60Hz
- 1200VA-4.32A @ 277VAC, 1/4 HP, 50-60Hz
- 1500VA-4.32A @ 347VAC, 1/4 HP, 50-60Hz
- 40°F to 160°F for Cat. No. OSFHU-ITW
- 14°F to 160°F for Cat. No. OSFHU-CTW

LIMITED 5 YEAR WARRANTY AND EXCLUSIONS
Leviton warrants this product to be defect in material and workmanship under normal and proper use for five years from the purchase date. Leviton's only obligation is to correct such defects by repair or replacement, at its option. For details visit www.leviton.com or call 1-800-824-3005.

WARNING:
To avoid electrical injury or death, disconnect power when servicing luminaire or changing bulbs.

FEATURES
- White Lens = 20-40ft mounting height
- Optional peal and stick mask kit
- Offset Adapters (sold separately)

FOR CANADA ONLY
For warranty information and/or product returns, residents of Canada should contact Leviton in writing at Leviton Manufacturing of Canada Ltd. to the attention of the Quality Assurance Department, 165 Hymus Blvd, Pointe-Claire (Quebec), Canada H9R 1B9 or by telephone at 1 800 405-3520
OSFLO ADAPTER INSTALLATION:
1. Position the adapter half with the insert nipple to the end of the luminaire or electrical box to determine if sensor will be positioned correctly for optimum coverage.
2. If appropriate position for coverage, insert the snap fitting into the knockout of the luminaire or electrical box (if added depth is needed for coverage, use the OSFOA with multiple positions).
3. Remove the locknut from the sensor and insert the wire leads through the mounting hole of the other half of the adapter. Slide locknut over wire leads and thread onto threaded sensor nipple and tighten so that sensor does not move. Align sensor so that it is parallel to the bottom of the luminaire or electrical box.
4. Feed the sensor wire through the adapter half mounted on the luminaire or electrical box and into the wire access area.
5. Snap the adapter half with the sensor attached to the adapter half on the luminaire or electrical box by aligning the snap fittings and pushing firmly together.
6. Connect per Wiring Diagram as follows: BLACK lead to LINE (Hot), RED lead to LOAD (White) lead to LINE (Neutral). Twist strands of each lead tightly and with circuit conductors, push firmly into appropriate wire connector. Screw connector on clockwise making sure no bare wires show below the connector.
7. Restore power at circuit breaker or fuse.

NOTE: Allow approximately 1 minute for charge-up. If the lights turn ON and the LED blinks when
9.1m (30 ft)
- The line voltage has dropped:
- Sensor is wired incorrectly or may be defective:
- Lens is dirty or obstructed:
- Sensor is wired incorrectly or may be defective:
- Circuit breaker or fuse is OFF:

unit to warm up before performing Time-Delay settings.

NOTE: Allow approximately 1 minute for charge-up. If the lights turn ON and the LED blinks when a hand is waved in front of the lens, then the Sensor was installed properly. If the operation is different, refer to the Troubleshooting Section.

TRoubleshooting

- Lights will not turn ON
 - Circuit breaker or fuse is OFF: Turn the breaker ON. Ensure the lights being controlled are in working order (i.e., working bulbs, ballasts, etc.)
 - Sensor is wired incorrectly or may be defective: Confirm that the sensor’s wiring is done correctly and inspect visually for problems.
 - Lens is dirty or obstructed: Inspect the lens visually and clean if necessary, or remove the obstruction.
- Lights will not turn OFF
 - Sensor is wired incorrectly or may be defective: Confirm that the sensor’s wiring is done correctly and inspect visually for problems.
 - Sensor may be mounted too closely to an air conditioning or heating vent: Move the sensor or close the vent.
 - The line voltage has dropped: Perform the necessary tests to ensure the line voltage has not dropped below 100V.
- Lights turn OFF and ON too quickly
 - Sensor may be mounted too closely to an air conditioning or heating vent: Move the sensor to another location or close the vent.
 - Time delay set improperly: Adjust the TIME DELAY.

Settings

Settings should be determined during the installation period. This adjustment controls the amount of time the lights stay ON after the last detected motion. You may select settings varying from 30 seconds to 20 minutes any time in between.

After power is turned ON, allow two minutes for this unit to warm up before performing Time-Delay settings.

Wiring Diagram

© 2016 Leviton Mfg. Co., Inc.

Figure 1A

INCORRECT
Sensor mounted too high
Outer beams are obstructed
Field-of-view is limited

Figure 1B

CORRECT
Sensor mounted within 1" of bottom
No obstruction
Optimum field-of-view

Figure 2A

Threaded snap-in nipple attaches to 1/2" luminaire or electrical box trade-size knockout holes

Figure 2B

Insert nipple attaches to 1/2" luminaire or electrical box trade-size knockout holes

Figure 3

Sensor mounts here (non-keyed) hole

Figure 4

White High Bay End Top View

Figure 5

Aisle Mask Top View

Figure 6

Blue Low Bay End Top View

Figure 7A

Line up dots
Pull up on tab to remove lens (High Bay or Low Bay)

Figure 7B

Insert aisle mask into lens assembly (if applicable)

Line up dots and turn to set lens

Position aisle mask for application