Leviton RF Room Controller
Cat. Nos. WSRC-200, WSRC-300 & WSRC-400

INSTALLATION

WARNING: To reduce the risk of shock, fire, or personal injury, all work must be performed by a qualified service technician or by a trained and knowledgeable installer.

WARNING: To avoid risk of fire, shock, or death, TURN OFF POWER, before and after work is performed on the equipment. TO TURN OFF POWER, press and not on the release. For example, one end of the rocker on a wireless light switch will be the ‘ON’ state for the load will then occur whenever that end of the rocker is pressed. Momentary Mode Programming Instructions

1. Read all Rocker Momentary Mode programming steps before taking any action to program an output of the receiver in Momentary Mode.

2. While the output is in Rocker Mode, press and hold the LEARN button for about 3 seconds (See Figure D). This activates Rocker Mode for the current selected output. The electrical load connected to the output will begin toggling ON and OFF in a fast pattern.

3. Follow Steps 3-4 of Rocker Mode Programming Instructions.

Rocker Mode (default) Programming Instructions

1. Open Rocker Mode by pressing one of the rocker buttons to a switch connected to the load. The load will stay ON for about 3 seconds indicating that the receiver has removed the transmitter’s unique ID from its memory. To delete a wireless motion detector from the memory, toggle the input in Learning Mode.

4. Clear All: If the CLR button is pressed and held for about 2 seconds (See Figure F), the entire memory of the rocker will be deleted. The rocker will instantly enter the default programming mode (Rocker Mode) indicated by the electrical load turning ON and OFF. This operation will delete any motion detectors (wired or wireless) from this channel, returning it to Manual-ON/MANUAL-OFF mode.

Additional Programming Options

Inverted Output Mode: The rocker supports the Inverted Output Mode of operation. In the default configuration, the N.O. relay contact is open (not connected) when not active, and closed (connected) when active. When the outputs are in Inverted Output Mode, the N.O. contact is closed when not active and open when active. Inverting the outputs may be used to simulate a normally closed relay that opens when a switch is actuated. One common use for this mode is for magnetic door release contacts. The output is ON (N.O. contact is closed) when the door is open. A microswitch is actuated, deactivating the electromagnetic and allowing the door to close. The magnet is reactivated as soon as the switch is released.

Inverted Output Mode Programming Instructions

1. Turn the power to the receiver OFF.

2. Press and hold the CLR button for 5 seconds while turning on the power. The load will blink twice to indicate activation of Inverted Output Mode.

3. Change to normal operating mode, repeat Steps 1 and 2. The load will now be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

Additional Programming Options

Inverted Output Mode: The rocker supports the Inverted Output Mode of operation. In the default configuration, the N.O. relay contact is open (not connected) when not active, and closed (connected) when active. When the outputs are in Inverted Output Mode, the N.O. contact is closed when not active and open when active. Inverting the outputs may be used to simulate a normally closed relay that opens when a switch is actuated. One common use for this mode is for magnetic door release contacts. The output is ON (N.O. contact is closed) when the door is open. A microswitch is actuated, deactivating the electromagnetic and allowing the door to close. The magnet is reactivated as soon as the switch is released.

Inverted Output Mode Programming Instructions

1. Turn the power to the receiver OFF.

2. Press and hold the CLR button for 5 seconds while turning on the power. The load will blink twice to indicate activation of Inverted Output Mode.

3. Change to normal operating mode, repeat Steps 1 and 2. The load will now be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.

To change back to normal operating mode, repeat Steps 1 and 2. The load will then be its normal mode (non-inverted) mode. The state of this mode is stored in non-volatile memory and is maintained even if the power is removed.
For Technical Assistance Call: 1-800-824-3005 (U.S.A. Only) www.leviton.com

LIMITED 5 YEAR WARRANTY AND EXCLUSIONS

Leviton warrants to the original consumer purchaser and not for the benefit of anyone else that this product at the time of its sale by Leviton is free of defects in materials and workmanship under normal and proper use for five years from the purchase date. Leviton's only obligation is to correct such defects by repair or replacement, at its option, if within such five year period the product is returned prepaid, with proof of purchase date, and a description of the problem to Leviton Manufacturing Co., Inc., Att: Quality Assurance Department, 201 North Service Road, Melville, New York 11747.

This warranty excludes and there is disclaimed liability for labor for removal of this product or reinstallation. This warranty is void if this product is installed improperly or in an improper environment, overloaded, misused, opened, abused, or altered in any manner, or is not used under normal operating conditions or not in accordance with any labels or instructions. There are no other or implied warranties of any kind, including merchantability and fitness for a particular purpose, but if any implied warranty is required by the applicable jurisdiction, the duration of any such implied warranty, including merchantability and fitness for a particular purpose, is limited to five years. Leviton is not liable for incidental, indirect, special, or consequential damages, including without limitation, damage to, or loss of use of, any equipment, lost sales or profits or delay or failure to perform this warranty obligation. The remedies provided herein are the exclusive remedies under this warranty, whether based on contract, tort or otherwise.

FCC COMPLIANCE STATEMENT: Contains FCC ID: SAV-TDMAXC. Contains IC: 5713A-TDMAXC. The enclosed device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (i) this device may not cause harmful interference and (ii) this device must accept any interference, including interference that may cause undesired operation.

Leviton is a registered trademark of Leviton Mfg. Co. in the United States, Canada, Mexico, and other countries. Other trademarks herein are the property of their respective owners.